

AFRL-IF-RS-TR-2003-63

Final Technical Report
March 2003

SURVIVABLE LOOSELY COUPLED
ARCHITECTURES

SRI International

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-63 has been reviewed and is approved for publication.

APPROVED:
JAMES L. SIDORAN
Project Engineer

 FOR THE DIRECTOR:
WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2003

3. REPORT TYPE AND DATES COVERED
Final Aug 96 – Dec 99

4. TITLE AND SUBTITLE
SURVIVABLE LOOSELY COUPLED ARCHITECTURES

6. AUTHOR(S)
John Rushby, Dawn Xiaodong Song, Jonathan K. Millen, Harald Rueb, and
Veronique Cortier

5. FUNDING NUMBERS
C - F30602-96-C-0291
PE - 62301E
PR - D985
TA - 02
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue
Menlo Park California 94022

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-63

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James L. Sidoran/IFGB/(315) 330-3174/ James.Sidoran@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The objective of this research was to develop mechanisms and methods of analysis to support construction of
survivable systems where survivable means systems able to withstand multiple kinds of faults among their components,
including those induced deliberately by an active attacker. One class of architectures for survivability builds on classical
methods for fault tolerance, in which replication and voting are used to mask faults. An alternative class of methods
requires less tight coordination, giving rise to loosely coupled architectures. Mechanisms that support survivability in
loosely coupled architectures are typically based on cryptography, and much of the work performed in this project
focused on development of suitable cryptographic protocols and on their formal verification. In the course of the project,
the state of the art was advanced from one where formal verification of these protocols was a tour de force to one where
it may be considered routine and available for general deployment. The outputs of this research are documented in a
series of technical papers (with associated abstracts) that follow.

15. NUMBER OF PAGES
131

14. SUBJECT TERMS
Survivable Systems, Loosely Coupled Architectures, Fault Tolerant Methods,
Cryptographic Protocols 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Part 1: Introduction…………………………………………………………………..1
 Bibliography…………………………………………………………………4
Part II: Technical Papers…………………………………………………………….5
 Appendix 1: Secure Auctions in a Publish/Subscribe System……………....6
 Appendix 2: A Necessarily Concurrent Attack…………………………….24
 Appendix 3: Protocol-Independent Secrecy………………………………..51
 Appendix 4: Local Secrecy for State-Based Models……………………….68
 Appendix 5: Proving secrecy is easy enough………………………………80
 Appendix 6: An Overview of Formal Verification for the Time-Triggered
 Architecture…………………………………………………..104

 i

This report covers the period August 28, 1996 through December 31, 1999, and docu-
ments work performed by SRI International for Rome Laboratory Contract F30602-96-C-
0291, Arpa Order E301.

The objective of this research was to develop mechanisms and methods of analysis to
support construction of survivable systems. By survivable systems, we mean those able
to withstand multiple kinds of faults among their components, including those induced
deliberately by an active attacker. One class of architectures for survivability builds on
classical methods for fault tolerance, in which replication and voting are used to mask
faults. These methods, however, require tight coordination among the replicas and may fail
to make progress if certain connectivity requirements are not satisfied (e.g., if there is no
majority clique in a partitioned network). An alternative class of methods requires less tight
coordination, giving rise to loosely coupled architectures.

Mechanisms that support survivability in loosely coupled architectures are typically
based on cryptography, and much of the work performed in this project focused on devel-
opment of suitable cryptographic protocols and on their formal verification. In the course
of the project we advanced the state of the art from one where formal verification of these
protocols was a tour de force to one where it may be considered routine and available for
general deployment. The outputs of this research are documented in a series of technical pa-
pers that are collected in Part II of this report. Below, we provide an index and abstracts for
these papers. Several of them were selected for presentation at major scientific conferences,
and we also provide citations for these publications.

Secure Auctions in a Publish/Subscribe System (page 6).

The project began with the design and verification of a protocol for fault-tolerant and
secure service for sealed-bid auctions in a loosely coupled system.

Abstract We present an approach to provide a fault-tolerant and secure service for
sealed-bid auctions. The solution is designed for a loosely coupled publish-subscribe
system. It employs multiple auction servers and achieves validity and security prop-
erties through application of secret-sharing methods and public-key encryption and
signatures. It can tolerate Byzantine failures of one third of the auction servers and
any number of bidders. A verification of the desired properties has been machine
checked using PVS. This work also provides insight and useful experience in tech-
niques for specifying and verifying this type of system.

A Necessarily Concurrent Attack (page 2 4). Published as [1].

The project next established that certain classes of attacks on protocols can be
mounted in a concurrent system but not in a sequential system. Thus, the intruder
is strictly more powerful in a concurrent system, and the burden of verification cor-
respondingly greater.

1

goodelle
Part I: Introduction

goodelle

Abstract An artificial protocol called the “ffgg” protocol is constructed, with an
assumed security objective to keep a certain data item secret. A message modification
attack is given that exposes the data item; in this attack there are two concurrently
running responder processes belonging to the same agent. To show that a concurrent
attack is necessary, we use an inductive approach to prove that the protocol is secure
under the assumption that this kind of concurrency is excluded.

Protocol-Independent Secrecy (page 51). Published as [2].

Formal verifications of cryptographic protocols have previously been monolithic.
This paper introduces a decomposition method for dividing the verification into two
components, thereby allowing reuse and reducing the overall effort required.

Abstract Inductive proofs of secrecy invariants for cryptographic protocols can be
facilitated by separating the protocol-dependent part from the protocol-independent
part. Our Secrecy theorem encapsulates the use of induction so that the discharge of
protocol-specific proof obligations is reduced to first-order reasoning. Secrecy proofs
for Otway-Rees and the corrected Needham-Schroeder protocol are given.

Local Secrecy for State-Based Models (page 6 8). Published as [3].

The next paper illustrates the verification techniques introduced by the previous pa-
per, using extracts from actual verifications performed using SRI’s PVS verification
system.

Abstract Proofs of secrecy invariants for cryptographic protocols can be facilitated
by separating the protocol-dependent part from the protocol-independent part. Our
Secrecy theorem encapsulates the use of induction so that the discharge of protocol-
specific proof obligations is reduced to first-order reasoning. The theorem has been
proved and applied in the PVS environment with supporting protocol representation
theories based on a state-transition model. This technique has been successfully ap-
plied to both standard benchmark examples and to parts of the verification of the
Enclave group management system.

Proving secrecy is easy enough (page 80). Published as [4].

The decomposition method developed in the previous two papers facilitates system-
atic development of secrecy proofs. The next paper presents the culmination of this
element of the research: a completely systematic method that allows easy verification
of challenging cryptographic protocols.

2

Abstract We develop a systematic proof procedure for establishing secrecy results
for cryptographic protocols. Part of the procedure is to reduce messages to simplified
constituents, and its core is a search procedure for establishing secrecy results. This
procedure is sound but incomplete in that it may fail to establish secrecy for some
secure protocols. However, it is amenable to mechanization, and it also has a conve-
nient visual representation. We demonstrate the utility of our procedure with secrecy
proofs for standard benchmarks such as the Yahalom protocol.

An Overview of Formal Verification for the Time-Triggered Architecture (page 104).
Published as [5].

In parallel to formal verification of cryptographic protocols, we also performed
research on formal verification of algorithms for the Time-Triggered Architecture
(TTA), which is being adopted for critical control applications in both civil and mil-
itary domains (for example, it is used in a new engine controller for the F16). Al-
though not loosely coupled, we considered that the very well defined verification
challenges presented by TTA would provide an excellent driver for development of
new techniques. This proved to be the case, as the diagrammatic formal verifica-
tion method developed for the TTA membership algorithm was subsequently applied
successfully (in another DARPA project) to the loosely coupled Enclaves architec-
ture [6].

Abstract We describe formal verification of some of the key algorithms in the
Time-Triggered Architecture (TTA) for real-time safety-critical control applications.
Some of these algorithms pose formidable challenges to current techniques and have
been formally verified only in simplified form or under restricted fault assumptions.
We describe what has been done and what remains to be done and indicate some
directions that seem promising for the remaining cases and for increasing the au-
tomation that can be applied. We also describe the larger challenges posed by formal
verification of the interaction of the constituent algorithms and of their emergent
properties.

3

Bibliography

[1] Jonathan K. Millen. A necessarily parallel attack. In Nevin Heintze and Edmund
Clarke, editors, Workshop on Formal Methods and Security Protocols (Part of the Fed-
erated Logic Conference, FLoC), Trento, Italy, July 1999.

[2] Jon Millen and Harald Rueß. Protocol-independent secrecy. In Michael Reiter and
Roger Needham, editors, Proceedings of the Symposium on Security and Privacy, pages
110–119, Oakland, CA, May 2000. IEEE Computer Society.

[3] Harald Rueß and Jonathan Millen. Local secrecy for state-based models. In Workshop
on Formal Methods and Computer Security (held in association with the Conference
on Computer Aided Verification, CAV), Chicago, IL, July 2000.

[4] Véronique Cortier, Jon Millen, and Harald Rueß. Proving secrecy is easy enough. In
14th Computer Security Foundations Workshop, pages 97–108, Cape Breton, Novia
Scotia, Canada, June 2001. IEEE Computer Society.

[5] John Rushby. An overview of formal verification for the time-triggered architecture.
In Werner Damm and Ernst-Rüdiger Olderog, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, volume 2469 of Lecture Notes in Computer Science, pages
83–105, Oldenburg, Germany, November 2002. Springer-Verlag.

[6] B. Dutertre, H. Saïdi, and V. Stavridou. Intrusion-tolerant group management in En-
claves. In The International Conference on Dependable Systems and Networks, pages
203–212, Goteborg, Sweden, July 2001. IEEE Computer Society.

4

Part II

Technical Papers

5

Secure Auctions in a Publish/Subscribe System
�

Dawn Xiaodong Song
Carnegie Mellon University

skyxd@cs.cmu.edu

Jonathan K. Millen
SRI International

millen@csl.sri.com

Abstract

We present an approach to provide a fault-tolerant and secure service for sealed-bid
auctions. The solution is designed for a loosely coupled publish/subscribe system. It
employs multiple auction servers and achieves validity and security properties through
application of secret-sharing methods and public-key encryption and signatures. It
can tolerate Byzantine failures of one third of the auction servers and any number of
bidders. A verification of the desired properties has been machine-checked using PVS.
This work also provides insight and useful experience in techniques for specifying and
verifying this type of system.

1 Introduction

The transition from traditional financial procedures to novel electronic and digital proce-
dures is taking place worldwide at a surprisingly high speed. Electronic commerce sys-
tems, such as electronic trading, electronic banking, and electronic exchanges are becom-
ing critical systems for society. As is the case with the traditional forms of critical systems,
electronic commerce systems often require safety and reliability guarantees. They must be
scalable and adaptable. They also require security properties such as secrecy, anonymity,
and non-repudiation.

It’s also commonly agreed that formal specification and verification are needed to pro-
vide solutions of this kind [15] [8] [10]. Many hand-checked protocols are found to be
flawed via formal methods after they are proposed [5] [9] [6]. But there is still a lack of in-
structive experience and a systematic way of combining system building blocks and formal
specification and verification techniques to provide a real solution.

Motivated by these problems, we studied one of these electronic commerce systems,
sealed-bid secure auction service. A sealed-bid auction is one in which secret bids are
issued for a certain item, and when the bidding is closed, the bids will be opened and the
winner will be chosen according to certain publicly known rules. Sealed-bid auctions are

�

This work was supported by the U.S. Government under contract no. F30602-96-C-0291

6

used in auctioning of various contracts, and in the sale of different types of goods, such as
artwork and real estate [4] [14].

Besides efficiency and scalability, sealed-bid auctions have strong security require-
ments. The identity of the bidders and the contents of the bids should not be revealed
until the bidding is closed. After the bidding is closed, no more bids should be accepted
as valid bids. The auction service should be able to tolerate a certain degree of corruption
of the insiders in the auction house and the maliciousness of some bidders. In an internet
environment, it is necessary to provide the required functional and security properties in the
face of unreliable network communication and random failures of important components
such as auction servers.

Franklin and Reiter have given a solution in the context of monetary bids [4]. Their
solution is focused on using a cryptographic technique to provide protections to monetary
bids, such as digital cash bids. It inherits certain properties from the digital cash scheme
used for the bids. In their solution, every bidding message and auction server synchroniza-
tion message requires atomic multicast [13] primitives, which can be a bottleneck in a large
system.

In this paper we present a new approach which is built on a loosely coupled architecture
and does not require atomic multicast. Loosely coupled publish/subscribe architectures
have been widely used for scalable, adaptable distributed systems [11]. Their flexibility
makes them a desirable infrastructure for many applications, but they generally lack fault
tolerance and security support in malicious environments. Our challenge is to integrate fault
tolerance and security in a loosely coupled publish/subscribe architecture in a systematic
way and use formal specification and verification to increase the assurance of the design
correctness [17].

Our solution is based on the the direct application of secret sharing and public key
encryption. It can tolerate Byzantine failures of one third of the auction servers and any
number of bidders. It provides a bid receipt service, which is often desirable in financial
activities, and can be used by the bidder to prove that a bid was entered before the bid-
ding was closed. We use PVS for formal specification and verification of the system and
the properties [12]. A resulting prototype is in process to demonstrate the efficiency and
scalability of the system.

The rest of the paper is organized as follows: the desired properties of the auction are
summarized in the next section. In Section 3, we present the basic building blocks of the
system and the cryptographic primitives needed in the design. In Section 4, we give an
informal description of the protocol in detail. In Section 5, we give an overview of the
formal specification of the system and some abstraction techniques. In Section 6, we list
the desired system properties as specified in PVS and explain how we used PVS to prove
these properties. Some issues are discussed in Section 7.

7

2 Auction Properties

The auction scheme is designed for any number of bidders and auction servers (also called
auctioneers). Some of the auction servers and bidders may be faulty by either intentionally
or incompetently failing to follow the specification of the protocol. The failure model and
other environmental assumptions are discussed in detail later.

The desired properties of the auction are as follows:

1. The bidding period starts only if at least one good auction server decides that it
should.

2. A good auction server stops accepting bids only after at least one other good auction
server decides that the bidding period should be closed.

3. The identity of the bidders and the content of their bids are not revealed until the
bidding is closed.

4. After the bidding period is closed, no more bids are accepted as valid.

5. Bidders are provided with evidence to prove that their bids are accepted before the
bidding is closed.

6. Winning bid will be determined according to certain publicly known rules.

At the end of the auction, a winning bid is selected. Guarantees regarding the authen-
ticity, nonrepudiation, and collectability of the bids are not provided by the protocol itself,
but those issues can be addressed separately through construction of the bid contents.

3 Building Blocks

The three architectural components of the system are:

� a loosely coupled publish/subscribe system,

� a set of cryptographic primitives, and

� an auction protocol.

The first two of these are summarized below. The principal contribution of this paper is
the design and verification of the auction protocol, as described in subsequent sections.

8

3.1 System Characteristics

3.1.1 Loosely Coupled Systems

Loosely coupled systems have been developed to meet the need for large-scale survivable
distributed systems [11]. The distinction between a loosely coupled system and a tightly
coupled one lies in the way they handle process groups [1]. In a tightly coupled system
there is a strong notion of group, sharing a common view of the group membership and the
state of the system. A tightly coupled system often requires reliable multicast and atomic
multicast [13]. The group membership protocol and reliable and atomic multicast primitives
are complex and expensive to implement and can be a bottleneck of a system.

Loosely coupled systems, by contrast, do not need a strong notion of group member-
ship. Instead of atomic multicast, they often use a publish/subscribe infrastructure where
components acting in the role of publishers or subscribers communicate through a virtual
bus (often called an “infobus”). Their great flexibility, adaptability and efficiency have
made such systems suitable for very large and wide-area networks.

3.1.2 Publish/Subscribe Architecture

In a publish/subscribe system, messages have a subject and a content field. Publishers
publish messages under certain subjects. Subscribers subscribe to subjects of interest and
receive the messages that are published under those subjects. Publish/subscribe systems are
flexible because the subjects and contents of messages are minimally constrained by the
core communication architecture. Subjects may have hierarchically organized, application-
defined modifiers or subtopics, and the format of the message content can be defined freely
according to the needs of the applications. Publish/subscribe also provides anonymity of
publishers and subscribers.

For the auction scheme, there will be an auction subject, with modifiers identifying a
particular auction and indicating whether the message is intended for auction servers or
bidders. Auction Servers and bidders both publish and subscribe to appropriate message
subjects as defined by the protocol. For each particular auction, there is a fixed set of
auction servers of known size.

The subject field and subscription mechanism cannot be depended upon to support se-
curity objectives such as authenticating authorized publishers or restricting distribution of
particular types of messages. For these and other security functions, we make use of addi-
tional cryptographic services.

3.1.3 Failure Model

The failure model has two aspects: the reliability of message delivery in the network and
the correctness of infobus clients, either auction servers or bidders.

9

The network is not assumed to be totally reliable. Messages can be delayed or lost or
received out of order. However, the protocol is not designed for arbitrary network failure or
indefinite denial of message delivery. It would not make sense to assume that an attacker
can intercept any and all messages, since then the attacker can simply intercept all bidding
messages from other bidders and only let its own bid go through.

It is assumed that published messages will be delivered to a sufficiently large portion of
the network within a bounded time. That is, any routing failures or denial of service attacks,
whether they are permanent or intermittent, can affect only relatively small segments of the
network. By “relatively small,” we refer to the proportion of auction servers that may
be affected. Since nothing is said about order of delivery, this assumption does not fall
precisely into previously defined categories of “unreliable” or “reliable” communication in
sources such as [4] and [11].

The second aspect of the failure model is the possible dishonesty of auction servers,
possibly in collusion with bidders. We adopt a Byzantine failure model in which faulty
auction servers may depart from the auction server protocol, withhold messages expected
from it, subscribe to all auction-related messages, and publish all kinds of auction-related
messages. A bidder may also be faulty and misbehave by submitting improper bids or
publishing them at improper times.

A “good” auction server is one that is not faulty and lies in a segment of the network
where messages published to other good auction servers will be received by all good auc-
tion servers in a bounded time. In practice, it may be necessary to send messages repeatedly
to ensure delivery, and this can be a normal function of the basic publish/subscribe trans-
mission protocol. The bounded-time assumption is discussed further in the Issues section
at the end.

We assume that at most a specified number
�

of the � auction servers are not good, and
that ����� ����� . Any number of bidders may be faulty or isolated in parts of the network
behind unreliable routers. Some bids may be lost for this reason.

3.2 Security Support

3.2.1 Public Key Infrastructure

The protocol will make use of a public-key cryptosystem that must be used by auction
servers and bidders for encrypting and signing messages, as called for in the protocol. We
assume that there is a certification authority that can provide public key certificates prior
to the auction. Implementing a practical public-key certification infrastructure is nontrivial,
but this task is separable from the conduct of the auction. In fact, there may be many
services other than an auction service that would make use of common key management
facilities.

One auction-service-specific function is required of the certificate authority: the certifi-
cate for an auction server’s public key should indicate that its role as an auction server is
authorized.

10

3.2.2 Secret Sharing

We also need a threshold secret sharing scheme. An ����� ��� -threshold scheme permits a
message to be projected onto � shares such that any � of them can be combined to recon-
struct the original message, but less than � of them cannot. Several algorithms for this are
given in Section 23.2 of [19].

4 Protocol Description

We assume that there are a set of � auction servers, denoted by �	� ,..., ��
 . The number �
is fixed for a given auction. We assume that � � � ��� � . For brevity, we refer to auction
servers as “servers,” though technically they are “clients” on the infobus. �� has server ID
s � . There may be any number of bidders ��� , with identifiers b � . The auction has a unique
auction ID, denoted as aid.

All messages relating to this auction are published under an “auction” subject qualified
by the auction ID. Some messages are intended solely for auction servers or bidders, and
for efficiency that fact may be indicated as a subject modification as well. From an abstract
or security point of view, it does not matter whether a field is part of the subject or part of
the content of a message, and we assume that hostile parties can eavesdrop on all messages.

For simplicity of the representation, we introduce some shorthand denotations.
For any message � , � ��� � is the encryption of � by server � � ’s public key. It is assumed

that any auction participant can look up and use ��� ’s public key given s � .
For any message � , � ����� is � signed by server ��� ’s private key. We assume that � is

recoverable from � ����� , and that the signature can be checked by any participant given s � .
All server messages in the protocol are signed, so that other servers will know they are

authentic. This is important to determine subsequent server actions and to justify inferences
about the state of good servers. Authentication of bids is not indicated in the protocol
because it affects only the internal structure of bids, and it matters only for bid evaluation,
which occurs after the protocol as specified has concluded.

We use a � � � � � ��� -threshold sharing scheme, where
�

is the maximum tolerable number
of faulty servers. SSF ������� is the � th share of a secret � .

A server’s state transitions are depicted in Figure 1. A bidder’s state transitions are
depicted in Figure 2.

S.1 Starting the bidding

When server � � decides that the bidding should be started, it publishes a start message:
aid � s ����� aid � start ��� . When ��� has received start messages from at least

� � �
different other

servers, it considers the bidding started and starts to accept bidding messages from bidders.

11

starting

bidding

closing

opening

reconstructing

prestart

Figure 1: Server State Transitions

prebid bidding commit

Figure 2: Bidder State Transitions

12

B.1 Submitting bids

Suppose a bidder � � decides to submit a bid � � . The format of � � will be discussed later.
� � breaks ��� into shares � � ��� SSF ������� � � for ��� � ������� � � . Then � � generates the bid

message: 	
�
� aid � b� ��� � ��� � � ������� ��� �
 � �
 �

This message is published to all servers.

S.2 During bidding

When server ��� receives a bid
	
� from a bidder � � during the bidding, it publishes a

receipt:
aid � b� � s � ��� hash � aid �

	
��� � �

where hash may be any standard one-way hashing function.

B.2 Committing the bids

When � � receives a receipt from ��� , it checks the validity of the receipt by checking the
signature on the hash value. After ��� receives valid receipts from at least � � � � different
servers, it enters its commit phase. Until then, it will either wait or periodically retry sub-
mitting the bid. We assume, essentially as part of the definition of a “good” server, that all
good servers will eventually receive and acknowledge a correctly formatted bid.

S.3 Closing the bidding

When � � decides that the bidding should be closed, it publishes a signed close message:

aid � s � ��� aid � close �����
When ��� has received close messages from at least

� � �
different other servers, it considers

the bidding closed and stops accepting any more bidding messages from the bidders.
Suppose ��� received � bids in total. Let � � be the set of indices of the bidders whose

bids were received by ��� . Thus, � � is of size 	� . For each ����� � , ��� decrypts its share of
��� ’s bid, namely � � � .

It then publishes a fingerprint of the set of bids that it has received:

aid � s ����� hash � aid ��� � b � ��� � ���
	
� ������������� � �

.
The fingerprint contains a signed hash of a list of triples, one for each received bid; each

triple has the bidder ID, ��� ’s bid share, and the complete bid message. (Faulty servers may
or may not send out a fingerprint message, but if they do, it is received by all good servers.)

13

S.4 Opening the bids

After a bounded time, all the good servers should have stopped receiving bids, and have
published their fingerprints. Since there are at most

�
faulty servers, there are at least ��� �

fingerprints published.
After a bounded additional time, each good server � � will have received fingerprint

messages from all other good servers. They republish all the fingerprint messages that they
have received. The inconsistent messages will be considered as from faulty servers and will
be discarded. So all good servers will have the same set of fingerprint messages. Then it
publishes its bid-set message, containing the information that was hashed to compute the
fingerprint. The bid-set message is:

aid � s ����� � � b � ��� � ���
	
� ������������� � �

S.5 Reconstructing the bids

After another bounded additional interval, each good server ��� will have received all bid-set
messages sent by all other good servers.

When � � receives a bid-set message from � � , it first checks whether it matches the
fingerprint from � � by computing the hash value. If they don’t match, it means ��� is faulty
and that bid-set message is discarded by � � (and all other) good servers.They republish all
the bid-set messages that they have received. The inconsistent messages will be considered
as from faulty servers and will be discarded. So all good servers will have the same set of
bid-set messages.

� � reconstructs the bid from � � as follows. Let
� � � be the set of indices of servers � �

from whom a bid-set message with
	
� has been received by � � .

For each index � � � � � , � � can extract � � ’s share of � � ’s bid � � , namely � � � , from the�
th bid-set message, compute � � � ��� � , and compare this with the value from the bid message	
� . If they match, the share � � � is valid and can be used to reconstruct the bid � � .

If
� � � contains at least

� � �
elements, then � � combines those

� � �
shares to construct

a value ���� that should be equal to the bid � � .
If there exists any

�
such that �SSF� ��� �� � � ���� � � � � � � , where � � � � � � is taken from the bid

message
	
� , then � � discards the bid from � � .

In this way, ��� reconstructs a set of bids and selects a winner according to the publicly-
known rule for the auction.

All the good servers will reconstruct exactly the same set of bids, because each of them
received the same set of bid-set messages. The majority of the servers will agree on a
selection, since good servers are in the majority, and that selection is declared the winner of
the auction. Issues such as authentication and enforcement of the bids will be discussed in
a later section.

14

5 Formal Specification of the System

The secure auction service system is a distributed system composed of asynchronous pro-
cesses, namely, the auction servers and bidders. Systems and most programming language
structures can be modeled as state machines [18]. A state machine consists of some encod-
ing of the system state, and the next-state transition relationship.

Compositional reasoning and verification are often necessary and desired to simplify
the complexity of a verification [3]. The state of a distributed system can be viewed as the
composition of the local states of its component processes. The state transition relation, as
well, can be decomposed into local state transitions per component.

Abstraction of the system structure, including communication and cryptographic prim-
itives, is necessary for protocol level specification and verification. In this section, we
describe how we use composition and abstraction techniques for the system specification.

For the secure auction service system, the global state is the composition of the local
states of the components representing auction servers and bidders. Each of these compo-
nents operates asynchronously according to a local state transition relation. There are two
local transition relations, one for auction servers and one for bidders.

All auction servers have the same state structure, and so do all of the bidders. These
structures are described in the next subsection.

The infobus is modeled using local state variables that record the sets of messages that
have been published by each participant. The state of the infobus is the union of all of these
locally-defined sets.

The global state structure is summarized schematically in Figure 3. The figure shows
how the auction server state and the bidder state are decomposed into state variables. The
infobus state also has components, each of which is derived as the union of corresponding
local state components.

5.1 Abstraction of the Auction Server

An auction server is a local state machine with the state variables shown in Figure 3. The
phase variable has one of the values prestart, starting, bidding, closing, opening, recon-
structing. wantStart and wantClose are boolean variables that indicates when the auction
server decides that it’s time to start or close, respectively.

start buffer, close buffer, bids buffer, fingerprint buffer and bidset buffer are sets of IDs
identifying servers and bidders from whom messages of these kinds have been received.

openBid is the set of IDs identifying bidders whose bid shares have been opened by this
auction server, i.e., those that are included in its bid-set message.

holdShare buffer is the set of all the shares that the auction server can decrypt from its
bids buffer. holdBid buffer is the set of all the bids that the auction server reconstructs at
the end.

15

GState

AState BState BusState

phase
wantStart
wantClose
start_buffer
close_buffer
bids_buffer

fingerprint_buffer
bidset_buffer

openBid
holdShare_buffer
holdBid_buffer

sentStart
sentClose

receipt_buffer

good
phase

wantBid
receipt_buffer

start_buffer
close_buffer
bids_buffer

receipt_buffer
fingerprint_buffer

shares_buffer

Figure 3: Global State Structure

16

sendStart and sendClose are boolean variables that indicate when the auction server has
already sent out start or close messages. receipt buffer is the set of all the IDs of bidders
whose bid it has acknowledged by a receipt.

5.2 Abstraction of the Bidder

A bidder is a local state machine with the local state variables shown in Figure 3. good is
a boolean flag that indicates whether the bidder is “good,” that is, if it follows the protocol
specification. The phase variable has one of the values prebid, bidding, commit. wantBid
is a boolean variable that indicates that when the bidder decides that it’s time to submit its
bid. receipt buffer is the set of IDs of servers from whom the bidder has received a receipt.

5.3 Abstraction of the Publish/Subscribe Communication

The bus has a state with six components. Each component is a set of IDs of servers or
bidders who have published messages of each type: start buffer, close buffer, bids buffer,
receipt buffer, fingerprint buffer and shares buffer. These sets are computed from corre-
sponding state variables in the local states of the servers and bidders.

In any state transition in which a message is published, that fact is recorded in the local
state of the publisher, and appears also by definition in the state of the bus. A message can
be received (as indicated in a local state variable) only if the message has previously been
published, as recorded in the current bus state. This is a fact about the construction of the
next-state transition relation. Also, by construction, each buffer set is nondecreasing.

While some state variables contain sets of messages, such messages are formalized as
elements of a primitive type, so that the actual contents and formats of protocol messages
are not explicitly represented in the specification. Instead, their essential properties are
axiomatized.

6 Formal Specification and Verification of Security Properties
in PVS

This section describes how the auction protocol was specified and verified using the PVS
environment.

6.1 PVS Overview

PVS is a integrated environment for specification and automated verification developed at
SRI [12]. PVS specification language is based on higher-order logic with a richly expressive
type system. It supports standard theories of integers, sets, functions, and relations, as well
as the ability to construct new abstract data types. The PVS theorem prover consists of a

17

powerful collection of inference steps augmented with a library of decision procedures and
the ability to add user-defined proof strategies.

A PVS specification is divided into theories, each defining a related set of data types
and stating axioms and theorems about them. Data type declarations resemble those in a
strongly-typed programming language. The bulk of the auction service specification is in a
single theory that introduces types for the state data structures summarized above.

The subsections below show how the essential property of the shared secret function is
axiomatized and how the auction service properties are stated. A few remarks about PVS
notation should be sufficient to read these formulas.

The new data types include ID, GID, BID, and trace. The ID type consists of all auction
server IDs, with a subtype GID of good server IDs. The BID type is for bidder IDs. A trace
is, by definition, a sequence of global states beginning with an initial state and such that
each consecutive pair of states is consistent with the transition relation.

Components of a structure are accessed by using the component names as functions.
Local states are obtained from a global state by indexing on the ID, so that, for example,
the holdBid component of server � in the global state � is
holdBid(astate(g)(i)).

In PVS, a set can be represented by a boolean function. Thus, the formula ��� � ����� ��� ���
would appear in the specification as G(x), and the set itself is written (G).

The shared-secret function invocation SSF � � � � is written SSF(i)(j), and card is
the cardinality function.

6.2 Axiomatization of the Shared Secret Function

The mathematical properties of the threshold sharing scheme are captured by the following
axiom, stating that at least

� � �
shares of a bid must be held by a server � � , as indicated in its

holdShare state variable, in order for that server to hold the reconstructed bid, as indicated
in its holdBid state variable. This is stated as true for every global state in a trace. The
contents of holdBid are not affected or constrained by any other part of the specification.

holdBid_true: AXIOM
FORALL (trace1:trace,j:nat,i:ID,b:BID):

holdBid(astate(trace1(j))(i))(myBids(b)) AND
good(bstate(trace1(j))(b)) <=>
(EXISTS (y:finite_set[below[N]]):
(FORALL(a:(y)):
holdShare(astate(trace1(j))(i))(SSF(myBids(b))(a))) AND
card(y)>t)

18

6.3 Invariants

The desired properties of the system are invariants; they are true of every reachable state,
i.e., every state in a trace. They are proved inductively by showing that they are true in an
initial state and preserved by all state transitions.

� Safe1: THEOREM
FORALL (trace1: trace, j:nat, gid:GID):

phase(astate(trace1(j))(gid))=bidding =>
EXISTS (i:GID): (wantStart(astate(trace1(j))(i))

The bidding period starts only after a good auction server decides that it should start.

� Safe2: THEOREM
FORALL (trace1: trace, j:nat, gid:GID):

phase(astate(trace1(j))(gid))=opening =>
EXISTS (i:GID): (wantClose(astate(trace1(j))(i)))

A good auction server stops accepting bids only after some good auction server de-
cides that the bidding period should be closed.

� pss: THEOREM
FORALL (trace1:trace,j:nat,i:ID,b:BID):
holdBid(astate(trace1(j))(i))(myBids(b)) AND
good(bstate(trace1(j))(b)) =>
CLOSE_bid(trace1(j))

Before the bidding is closed, the identity of the bidder and the bids of the bidder are
not revealed. CLOSE bid(�) is defined as true if all good servers in global state �
have reached at least the opening phase.

� Uniform: THEOREM
FORALL (trace1:trace,j:nat,i1:GID,i2:GID,b:BID):
(holdBid(astate(trace1(j))(i1))(myBids(b)) AND i1/=i2
AND Open_bid(trace1(j))
AND good(bstate(trace1(j))(b))) =>
holdBid(astate(trace1(j))(i2))(myBids(b))

After the bids are reconstructed, all the good servers reconstruct the same set of bids.

� Close1: THEOREM
FORALL (trace1:trace,j:nat,i:GID,b:BID):
(holdBid(astate(trace1(j))(i))(myBids(b)) AND
good(bstate(trace1(j))(b))) =>
validBid(trace1(j))(b)

19

After the bidding period is closed, no more bids can be accepted as valid bids.
validBid(�)(�) is defined as true in a global state � if the bid from � has been ac-
cepted by at least one good server.

� commit: THEOREM
FORALL (trace1:trace,i:GID,b:BID,j:nat):

phase(bstate(trace1(j))(b))=commit
AND good(bstate(trace1(j))(b))
AND Open_bid(trace1(j))
=> holdBid(astate(trace1(j))(i))

If a good bidder commits, its bid is guaranteed to be reconstructed and taken into
final consideration as a in-time bid.

7 Design and Modeling Issues

This section discusses some issues regarding assumptions and design choices that were
made in the present protocol design.

7.1 Other properties of the Auction

At the conclusion of the protocol as presented, all good servers have opened the same set of
bids and agreed on a winner. The identity of the bidder supplying that bid is not guaranteed
by the protocol. Any authentication or nonrepudiation if needed can be provided by some
other cryptographic primitives and the format of the bids which is application-specific.

7.2 Delivery of electronic goods

If the object of the auction is in electronic form, such as software or a postscript file, our
original approach can be extended to secure delivery as follows. Every bidder will include
a public key in its bid. Then the goods can be transmitted confidentially to the winner by
using the public key provided in the winner’s bid. This public key need not be certified,
because it is in the interests of the winner to provide the correct key, and the good servers
will agree on its value.

We might also ask where the file to be awarded was held prior to delivery to the winner.
Rather than trust any one server to hold it, it can be split using a � ��� � � ��� secret-sharing
scheme among all servers. Each server will publish its own share encrypted by the winner’s
public key so that the winning bidder will receive enough shares to reconstruct the item,
and a collusion of faulty servers will not be able to reconstruct it.

20

7.3 Externally Triggered Transitions

Certain state transitions occur as a result of the passage of time, based on assumptions
about the reliability of good servers and network message delivery. Good servers decide to
start the bidding and close the bidding according to a predefined date/time schedule for the
auction or some external event. They consult a local system clock or receive some other
events to trigger those state changes. The triggering events may be out of synchronization,
but the protocol compensates for this by forcing good servers to undergo the phase change
when it has received signal messages from

� � �
other servers. The number

� � �
means

that at least one good server has sent out its signal.
Event-triggered state changes are indicated with boolean state variables. In the specifi-

cation, they are set nondeterministically.

7.4 Time Bounds

A good server opens bids only when it knows that all good servers have stopped accepting
bids and published their fingerprints. This knowledge comes not from having received
any particular number of close or fingerprint messages, but rather from the time bound on
actions of good servers and delivery of their messages. The transition to opening bids is
triggered in the specification by a predicate on the global state testing whether all good
servers have published their fingerprint messages.

The assumption that good servers can send messages to one another within a known
time bound is a strong but reasonable assumption. The protocol will fail if some global
outage (internet worms, satellite failure, etc.) affects a large portion of the network for
an excessive time. We are investigating whether we can weaken the delivery assumption
by making use of failure detectors or by assuming instead partial synchrony, where a time
bound exists but is not known [2]. Alternatively, it may be adequate to recognize, when
a known time bound passes, that an insufficient number of good servers has responded,
and declare the auction invalid without compromising the bids. In the present protocol, if
too many servers go out of communication, it is a liveness rather than a safety or security
problem, since the bids will remain secret.

8 Conclusions

The motivation for this work was to understand whether it is possible to integrate fault-
tolerance and security into loosely coupled publish/subscribe systems and to combine the
system building blocks with formal techniques to provide possible solutions for electronic
commerce systems, particularly a secure auction service.

We have accomplished these goals, and gained assurance in the correctness of the design
through the use of an established specification and verification facility. One of the beneficial
consequences of the verification activity was a better understanding of what assumptions to

21

make about message delivery, leading us to a different category of “reliable” transmission
that is reasonable for a publish/subscribe system.

We are in the process of implementing a prototype system demonstrating the design,
using the Java Infobus application program interface.

Acknowledgements

Thanks to John Rushby for helpful discussions and advice. Thanks to Sergey Berezin and
others at SRI for help with PVS.

References

[1] K. P. Birman. The process group approach to reliable distributed computing. Comm.
ACM, 1993.

[2] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 1988.

[3] E.Clarke, D.Long, and K.McMillan. Compositional model checking. In Proceedings
of the Fourth Annual Symposium on Logic in Computer Science, pages 353–362, 1989.

[4] M. K. Franklin and M. K. Reiter. The design and implementation of a secure auc-
tion service. In IEEE Security and Privacy Symposium, pages 2–14. IEEE Computer
Society, 1995.

[5] G.Lowe. Breaking and fixing the needham-schroeder public-key protocol using FDR.
In Proceedings of TACAS, Lecture Notes in Computer Science, volume 1055, 1996.

[6] Li Gong, R.Needham, and R.Yahalom. Reasoning about belief in cryptographic pro-
tocols. In Proceedings of 1990 IEEE Symposium on Research in Security and Privacy,
1990.

[7] L.Lamport and M.Pease. The byzantine generals problem. ACM TOPLAS, 1982.

[8] L.Paulson. Proving properties of security protocols by induction. In 10th IEEE Com-
puter Security Foundations Workshop, 1997.

[9] M.Burrows, M.Abadi, and R.Needham. A logic of authentication. In Proceedings of
the Royal Society, volume 426 of A, pages 233–271, 1989.

[10] Catherine Meadows. The NRL protocol analyzer: an overview. Journal of Logic
Programming, 1996.

22

[11] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus - an architecture for
extensible distributed systems. ACM Operating Systems Review, 27(5):58–68, 1993.

[12] S. Owre, J. M. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Trans. on Software
Engineering, 21(2):107–125, February 1995.

[13] Michael Reiter. Secure agreement protocols: Reliable and atomic group multicast
in rampart. In 2nd ACM Conference on Computer and Communications Security,
November 1994.

[14] R.McAfee and J.McMillan. Auctions and bidding. Journal of Economic Literature,
1987.

[15] John Rushby. Formal methods and their role in the certification of critical systems.
Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI International,
Menlo Park, CA, March 1995.

[16] John Rushby. Systematic formal verification for fault-tolerant time-triggered algo-
rithms. In Mario Dal Cin, Catherine Meadows, and William H. Sanders, editors, De-
pendable Computing for Critical Applications—6, volume 11 of Dependable Comput-
ing and Fault Tolerant Systems, pages 203–222, Garmisch-Partenkirchen, Germany,
March 1997. IEEE Computer Society.

[17] John Rushby and Friedrich von Henke. Formal verification of algorithms for critical
systems. IEEE Transactions on Software Engineering, 19(1):13–23, 1993.

[18] Fred Schneider. Implementing fault-tolerant services using state machine approach: a
tutorial. ACM Computing Serveys, 1990.

[19] B. Schneier. Applied Cryptography. Wiley, 1996.

23

A Necessarily Concurrent Attack
�

Jonathan K. Millen
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

millen@csl.sri.com
Phone: +1 (415) 859-2358 Fax: +1 (415) 859-2844

Abstract

An artificial protocol called the “ffgg” protocol is constructed, with
an assumed security objective to keep a certain data item secret. A mes-
sage modification attack is given that exposes the data item; in this attack
there are two concurrently-running responder processes belonging to the
same agent. To show that a concurrent attack is necessary, we use an in-
ductive approach to prove that the protocol is secure under the assumption
that this kind of concurrency is excluded.

1 Introduction

Model checking has proved to be a successful way to find vulnerabilities in cryptographic
protocols. See, for example, [2, 3, 6]. If a model checker fails to find an attack, however, it
may only mean that there is no attack on the particular finite system analyzed. We would
like to know under what conditions an analysis of a finite system is, or is not, sufficient
to justify a security claim for a protocol in a network environment with an unbounded
number of concurrent and past runs of this and other protocols. Under certain restrictive
assumptions about the protocol, Lowe has shown that it is sufficient to analyze a system
with one honest agent in each role, each of whom can run the protocol just once with the
other honest agents [1]. The purpose of this paper is to show that for some other protocols,
it is necessary to analyze a system with at least two processes running the same role for the
same agent.

Furthermore, the two processes must run concurrently; that is, the protocol is secure
if the two processes are serialized. We call this role concurrency to distinguish it from the

�

This work was supported by ARPA under Arpa Order E301, Air Force Rome Laboratory contract no.
F30602-96-C-0291

24

normal concurrency of the communicating processes in complementary roles. It should also
be distinguished from the normal concurrency of independent protocol sessions involving
disjoint sets of agents. Role concurrency is significant because state exploration techniques
encounter a combinatorial explosion with concurrent processes that is avoided if they can
be serialized.

An artificial protocol called the “ffgg” protocol is constructed, with an assumed secu-
rity objective to keep a certain data item secret. A message modification attack is given
that exposes the data item; in this attack there are two concurrently-running responder pro-
cesses belonging to the same agent. To show that a concurrent attack is necessary, we use
an inductive approach to prove that the protocol is secure under the assumption that role
concurrency is excluded. The proof technique is based primarily on Paulson’s work [5],
but it borrows the “ideal” concept from the Thayer, Herzog and Guttman paper [7], and the
proof is constructed and checked in the PVS verification environment [4].

2 The ffgg Protocol

In this protocol,
�

and � are agents (sometimes called “principals”), ��� and ��� are nonces,�
is a secret message, and PKB is � ’s public key.

�
	 ��� �� ���	 � ��� �� ��� � ���	 ��� ������ ��� � ��� ���
PKB� 	 � ��� �� ��� � �
� ��� �
� � � � � � PKB

When � receives message 3, � performs only certain limited checks and computations
to form the reply. � checks ��� , and extracts ��� but does not check it against the original
value generated by � . We also assume that the type of

�
is not discernibly different from

that of ��� .
The use of PKB rather than PKA in the last message is not a misprint. We do not claim

that this protocol is suitable for any application, only that it poses an interesting problem
for analysis.

We call this the “ffgg” protocol because the responder � has two state transitions: the
first, or -transition, is to reply to message 1 with message 2, and the second, or ! -transition,
is to reply to message 3 with message 4. In the attack scenario, there is another � responder
doing #" and !�" transitions, and these are interleaved concurrently with and ! in the pattern
 $ " !�! " .

3 The Concurrent Attack

A message-modification attack that exposes the secret data item
�

is presented below.

25

An agent identifier in parentheses indicates interference by the attacker: if the source is
in parentheses, the message has been forged or modified by the attacker. If the destination
is in parentheses, the message is intercepted before it reaches the named destination.

There are two responder processes running for agent � ; the second process is associ-
ated with primed symbols � " � ��"� � � "� . Note that, because the second responder process is
running on behalf of the same agent � , it still uses the same public key PKB.

�
	 ��� �� � � " 	 � ��� � � " ���� 	 � � � ��� � ��� � � � " 	 ��" � � ��� ��"� � � "���� 	 � � � � � � ��� � "���	 ��� ������ ��� ��"� � ���
PKB� 	 � � � ��� � � � ��"� � ��� "� � � � � � � PKB� " 	 � ��� � � " ��� "� � � � � � � PKB� " 	 ��" � � ��� ��"� � � � � � � � ��� � "� � PKB

Having shown that there is a concurrent attack, we must now establish that role con-
currency is a necessary feature of any successful attack. That is, we must prove that the
protocol is secure if role concurrency is disallowed. We do this by setting out to prove that
the protocol is secure as it stands, and reducing the proof to one remaining case that fails
only if role concurrency is allowed.

4 The Modelling Approach

We apply Paulson’s modelling approach. The network environment is captured by several
rules that permit message events to be appended to a trace. Most of the rules represent state
transitions by agents following a specified role in the protocol. Another rule represents the
fabrication of message events by the “Spy.”

The content of a message is a field in the set 	 of one of several subtypes: an agent in
the set
 , a nonce in the set � , a key in the set � , or it could be computed as a concatenation�� ��� �

for any
 ����� 	 or a ciphertext � ��� for

 � 	 and � � � .
In a more general context, a distinction would be made between public keys and sym-

metric keys, and other types of fields or computations might be needed.
A message event has the form

��� � , where
�

and � are the source and destina-
tion agents, respectively, and the field

is the message content. When

is a concatena-

tion occurring as a message content, we omit the outer parentheses. We also omit the outer
parentheses when the concatenation is being encrypted, and there are brackets around it.
When we write a multiple concatenation like

��� ��� ��� � , this is supposed to be interpreted
as a nested binary concatenation that is parsed right-associatively, as

��� � � � ��� ��� .

26

We are taking liberties with Paulson’s terminology – for example, Paulson would write
an event as Says

� � , and the type of

was called “message.” Our variance in ter-
minology is for two reasons: in most of the text we wish to stay as close as possible to
conventional protocol notation, and the machine-checked proofs use a different PVS for-
mulation.

The essential aspects of Paulson’s model have been retained, however. In particular, the
trace only contains send events – no receive events. Also, the source agent name

�
is the

true source and would be “Spy” for messages generated by the Spy. This address is not
visible to the destination agent, who can see only the message content

.

A trace is a sequence of message events. A protocol is a triple
��� ��� ��� � where

�
is

a set of traces, � is a set of secret fields, and � is a set of fields interpreted as the initial
knowledge of the Spy. Thus, a protocol, by our definition, includes a secrecy policy and an
assumption about what information a potential attacker might have.

We assume that
�

is prefix-closed (if ��� � � then � � �). The elements of � are atomic
data items (keys and nonces) that are required to be protected from disclosure to the Spy.
Thus, �
	����� (otherwise the game is over). Actually, we need a stronger condition given
in the next section.

5 The Secrecy Policy

The secrecy policy for the protocol
��� ��� ��� � is that if

� � �� occurs in some trace
� � � , then

����� . (This is what we want, because if the Spy ever obtains a secret item

,
it can transmit it as a message.) This secrecy assertion is proved inductively as an invariant.
It is clearly true for the null trace, and our objective is to show that the invariant is preserved
by each of the rules for appending events to traces.

As is often the case with inductive proofs, the invariant has to be strengthened to carry
out the induction. The invariant that we will actually prove is that

������������� , where ���������
is a Thayer-Herzog-Guttman ideal, a set of fields that includes � and which is closed under
concatenation with any fields and encryption with keys in � .

As defined in [7], ��������� is the smallest set of fields including � such that for all
 �

��������� , keys � � � , and fields � ,

1.
�� ��� � �����������

2.
� � � � �����������

3. � � � �����������
The reason for protecting the whole ideal is that compromising any element of the ideal

effectively compromises some element of � .
For our purposes, � is the set of keys whose corresponding inverse keys are not in � .

Thus, we use the special ideal:

27

� ����� � ��� ����� where � � � ��� ��� � �� � � .
More generally, an ideal should be closed under all transformations that are reversible

by the spy.
We remarked in the previous section that the condition � 	�� �� is not enough to make��� ��� ��� � a protocol. This is because the spy’s initial knowledge should not contain anything

in
� ����� . Thus, we will assume that

� 	 � ����� �� 	

6 Modelling the Spy

Given a trace representing the history of messages already sent, the spy can examine the
contents of all messages, analyze them by decrypting fields for which he has the appropriate
key, and synthesize new messages from the fields thus obtained. Paulson introduced the set
functions sees, parts, analz, and synth to describe these activities.

Given a trace � , the message contents seen by the spy form the set of fields:

sees
� � � � � � ��� � � � � � � � �� � � � � 	

Notation. We are using � to denote occurrence of a message in a trace as well as
for set membership. We will abbreviate sees(�) with an underline: sees(t) = � 	 Also, if� � � � � �� �

, we will write � �
. Thus, � � � � � � � � � .

The parts of a set � of fields include the components of concatenations and the plaintext
of encrypted fields.

 � parts
� � � iff � � or��� � � ���� ��� � � parts

� � � or
� � � � � parts

� � ��� or��� � � � � � � parts
� � � 	

The spy cannot analyze out all the parts, only those for which he has the needed keys.
The spy-visible subset of parts is analz.

 � analz
� � � iff � � or��� � � ���� ��� � � parts

� � � or
� � � � � analz

� � ��� or��� � � � � � � � analz
� � � and � � � � analz

� � ��� 	
Fields are synthesized from existing ones by concatenating them and encrypting them.
 � synth

� � � iff � � or��� � �	� � � � � � � �	� � or��� � ����� � � � � � � � .

28

Paulson showed that each of these three operators is idempotent: that is,
parts

�
parts

� � ��� � parts
� � � � analz

�
analz

� � ��� � analz
� � � � and synth

�
synth

� � ��� �
synth

� � � 	
Given a trace � representing a history of message events, the spy can fabricate new

message events Spy
� � to any agent � provided that

can be synthesized from

fields analyzed from � or already known initially. Suppose the spy initially knows the fields
in � . The predicate Fake gives the rule for creating spy-fabricated messages:

Fake
� � � � ��� � iff��� � � � � �
 and� = Spy

� � and � synth
�
analz

� � � � ��� 	

As usual, the spy is assumed to know the identities of all agents, so they do not have
to be included in � . Other fields such as the spy’s own secret keys have to be put into �
because we don’t have a general protocol-independent way to express them.

7 The Secrecy Theorem

The proof of security has a general protocol-independent part and a protocol-specific part.
The “Secrecy Theorem” given in this section is the protocol-independent part.

A trace is called safe if no field analyzable from it, using fields in � , is in the secret
ideal. If every trace in a protocol is safe, then no message exposes any field in � , and the
protocol is secure.

Let
� ����� � � � field � ��� � ����� � .

� is
� � ��� � -safe iff

analz
� � � � ��� � ����� 	

The public set
� ����� has the interesting and useful property that it is closed under appli-

cation of analz. This makes sense, since
� ����� is closed under operations that are reversible

by analz. This “analz-closure” property is stated below and proved in the appendix. It
plays an important part in the proof of the Secrecy Theorem.

Lemma 1 (Analz-closure) analz
� � ����� ��� � ����� .

A protocol is event-safe if, given a safe trace of prior messages, the content of the next
message is not in the secret ideal. Proving event safety is a protocol-specific activity. It is
essentially the induction step of the overall proof.

A protocol
��� ��� ��� � is event-safe iff

(� is
� � ��� � -safe and � � � � ��� � � � ����� .

29

Theorem 2 (Secrecy) If
��� ��� ��� � is event-safe then � is

� � ��� � -safe for all � � � .

The proof of the Secrecy Theorem is in the appendix. A machine-checked PVS proof
also exists.

8 The ffgg Protocol Rules

The formal version of the ffgg protocol is a recursive predicate defining a set of traces. The
definition says that a message event may be appended to a trace if it is permitted by any of
five rules, of which one is the Fake rule and the others correspond to the four messages in
the normal protocol sequence. A “rule” is just a predicate relating a possible new message
to a prior trace.

ffgg(�) iff
null(�) or
� � � � where ffgg(�) and
(Fake

� � � � ��� � or
a1
� � � � � or

bf
� � � � � or

a2
� � � � � or

bg
� � � � �).

The message-generating rules are given below. The messages in this version of the
protocol are somewhat more elaborate than before. The message number and the identity
of the sender have been added to the content of each message (since the actual source will
not be visible to the recipient).

Terminology:
�

is a fixed secret field that may be sent to any agent except the Spy.
There is a function pk that maps any agent to its public key.

a1
� � � � � iff��� � � � � ���� � and� � � ��� � � � ���

bf
� � � � � iff��� � � � ��� � � ��� � � �� � � � � � � � � � ��� � � and�

� � � � ��� ��� � � and� �� � � �� parts
� � � and� �� � � �� parts
� � �

a2
� � � � � iff��� � � � ��� � � ��� � �
� � " �

30

� � ��� �� � � � � ��� � � � �
� � " � pk ����� and� � �� Spy or
� " �� � �

and� " �� parts
� � � and�

�
��� � � � � � ��� � � � � �

bg
� � � � � iff��� � � � ��� � ��� � � � � � � �� � � � � � � � � � � � ��� � � � � pk ����� and�

�
� � � � � � ��� ��� ��� � pk �����

� � � and� � � � � � � � � ��� � � � � � and��� � � � � ��� � � � � �	� � �� �
The a1 rule should need no explanation, but the rest probably do. Note that the agent

identifiers
� � � � etc., are variables. These rules can be used by any agents at any time, and

the generated trace could be a mixture of any number of sessions.
In bf, the conditions that � � and � � do not occur in � imply that � � and � � are fresh;

they have not been used before. The fact that � � and � � are not guessable by the spy is
implicit in the fact that they cannot be generated by a Fake message. If we wanted them to
be guessable, we would add them to the initial knowledge � . Freshness is, of course, not
implemented by reading the trace, but instead by generating nonces randomly.

In bf and most of the other rules, there is nothing to prevent an agent from generating the
same message repeatedly, which would not be allowed with a more standard state-transition
process specification. The extra messages are not a problem when proving a confidentiality
property, since if a secret is not exposed with a liberal protocol specification, it is certainly
not exposed with a more restrictive one.

The a2 rule generates a message with a field
� " that may or may not be the secret

�
.

The conditions on
� " are that

� " is fresh and that
� " is not

�
if the message is being sent

to the Spy.
Rule bg includes a check that message 4 with nonce � � has not been sent previously. It

also checks that the same agent � has sent message 2 with � � . Agent � does not have to
read the trace to know whether these conditions are satisfied; they would be implemented
by saving internal state information.

The protocol ffgg is the triple
��� ��� ��� � where

� � ��� � ffgg(�) �
� � � ��� ��� pk

� ��� � � � � �� Spy
�

� = � pk(Spy) � � � � � pk
� ��� � � �
 � �

31

9 Characterizing Concurrency

We know that protocol ffgg is not secure, since an attack has been exhibited. What we can
prove is that the protocol fgfg =

��� " ��� ��� � is secure, where
� " � ��� � ffgg(�) and � is not

concurrent
�
.

By “concurrency” we mean actual rather than potential concurrency. It is a property of
a trace indicating that two processes are interleaved in such a way that neither one finishes
before the other starts. An initiator process and a responder process normally run concur-
rently. What we are looking for here is role concurrency in two responder processes running
on behalf of the same agent.

We have characterized concurrency, for our purposes, in two ways. First, there is a
general observation, stated as an axiom, that concurrency is persistent:

Axiom 1 (Persistence of Concurrency) If � is a concurrent trace, and � is a trace, then � �
is a concurrent trace.

Second, we can identify role concurrency specifically in the ffgg protocol, when it hap-
pens with multiple session processes of the same agent playing the role of responder. Role
concurrency has occurred for agent � when the trace contains messages � � � � �
� ��� � ���
in that order, but not necessarily consecutively, such that:

� � � � � � � � � � � ��� � �
� � � � � � " � � � � � "� � ��"�
��� � � � � � � � ���
��� � � � � " � � � "� ���

Here, the responder role is identified by the message numbers 2 and 4 (not by the use of
“ � ” as the agent variable), and the different session processes are distinguished by different
nonces, � � vs. � "� . The first nonce in each message identifies the session process because
nonces are generated freshly in each session, and the first nonce in message 4 is the same as
that in message 2 only if that message belongs to the same session process. Thus, � � � � �
belong to one session process and � ��� ��� belong to another. The agents

�
and

� " do not
have to be the same; but they are the same in the ffgg attack.

Role concurrency has still occurred if these messages appear in the order� ��� � ��� ��� � ��� . In either case, the two session processes are concurrent because they
are not sequential: neither one finishes before the other starts.

32

10 Proof Notes

PVS is an interactive environment for writing formal specifications and checking formal
proofs. It supports a variety of standard data types useful in mathematics and computer
science, and it facilitates the definition of new abstract data types. The PVS proof checker
manages the proof construction process and provides simplification and decision procedures
to carry out relatively large proof steps.

As encoded in the PVS language, message events and their components were abstract
data types, and traces were LISP-like lists. Field-set functions like synth were defined
recursively, except for analz, which was defined as an inductive relation in almost exactly
the form shown earlier. The needed properties stated by Paulson were all confirmed, along
with the new results such as analz-closure.

The bulk of the protocol-specific part of the proof was for the “main lemma,” which
was the statement that fgfg is event-safe. Proofs are recorded and can be replayed, causing
the proof checker to recheck the steps against the current version of the specification files.
Proof-checking the main lemma takes about 75 seconds of CPU time. This does not include
the checks of previously proved lemmas, which were much shorter.

The proof was primarily a matter of considering, in turn, the rules by which a new
message could be generated, and asking how that message could possibly be in

� ����� . A
secret message content could not be generated by the Fake rule, because of the synth-closure
lemma below, and Fake messages are synthesized from the prior trace, which was assumed� � ��� � -safe. Synth-closure, like Analz-closure, is easy to prove.

Lemma 3 (Synth-closure) � � � ����� � synth
� � ��� � �����

The only other rule that could possibly generate a secret message content is bg. This
case led to an examination of the prior messages that must have been sent, and the messages
that must have preceded them. All cases were eliminated except for one, which exhibits the
ffgg-specific condition for role concurrency.

Most of the PVS specifications for the protocol and supporting theories are given in an
appendix, and so is the final concurrent case. These specifications are included in the report
for reference purposes and are intelligible only to readers familiar with the PVS language.

11 Conclusions

We have given an example protocol, the ffgg protocol, for which role concurrency is neces-
sary to disclose a secrecy compromise. Although the example only exhibits a need for two
concurrent processes, it is apparent from the structure of the messages that any degree of
concurrency could be forced by inserting more nonces.

We have not addressed non-secrecy policies such as authentication or non-repudiation,
but the overall approach of proving the protocol correct except for a concurrent case should
still apply.

33

Concurrency was formalized in a protocol-specific way. It would be desirable to express
concurrency more generally. To do so, there would have to be a general way of associating
message events with the session process that produced them. That seems to require some
foresight in the design of message events when the protocol is specified formally at the
process level.

Acknowledgement

The motivation for this example and improvements in its presentation arose from helpful
discussions with Grit Denker.

34

References

[1] G. Lowe, “Towards a completeness result for model checking of security pro-
tocols,” 1998 Computer Security Foundations Workshop, IEEE Computer So-
ciety, 1998.

[2] W. Marrero, E. Clarke, and S. Jha, “Model checking for security protocols,”
Carnegie Mellon University, CMU-CS-97-139, 1997.

[3] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of crypto-
graphic protocols using Murphi,” IEEE Symposium on Security and Privacy,
IEEE Computer Society, 1997, pp. 141-151.

[4] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal verification for
fault-tolerant architectures: prolegomena to the design of PVS,” IEEE Trans.
Software Eng. 21(2), Feb. 1995, pp. 107-125.

[5] L. Paulson, “Proving properties of security protocols by induction,” 10th IEEE
Computer Security Foundations Workshop, IEEE Computer Society, 1997, pp.
70-83.

[6] A. W. Roscoe, “Modelling and verifying key exchange protocols using FDR,”
1995 Computer Security Foundations Workshop, IEEE Computer Society,
1995, pp. 98-107.

[7] F. J. Thayer, J. Herzog, and J. Guttman, “Honest ideals on strand spaces,” 1998
Computer Security Foundations Workshop, IEEE Computer Society, 1998.

35

A Proof of Analz-closure

Lemma 1 (Analz-closure) analz
� � ����� ��� � ����� .

Proof. The proof makes use of a fixpoint induction principle based on the definition of
analz. It can be shown that if:

1.
� � �

and

2.
�� ��� � � � � � � and � � � and

3. � � � � � and ��� � � � � � �

then analz
� � � � �

. In particular, analz
��� � � �

requires only items 2 and 3. For
� �� ����� , these statements are just the contrapositives of the closure properties defining

� ����� .

B Proof of Secrecy Theorem

Theorem 2 (Secrecy) If
��� ��� ��� � is event-safe then � is

� � ��� � -safe for all � � � .

Proof. The proof is by induction on the length of the trace � . The null trace is
� � ��� � -safe

if analz
� � � � � ����� . But � � � ����� because

��� ��� ��� � is a protocol. As Paulson noted, analz
is monotonic, so

analz
� � ��� analz

� � ����� � 	
An application of analz-closure completes this case.

Now assume that � � � � , and we have the induction hypothesis that � is
� � ��� � -safe.

We must show that
analz

� � � � � � � � ����� 	
By analz-closure, it suffices to show that

� � � � � � ����� 	

But � � � � ��� � � . Event-safety of
��� ��� ��� � says that

� � � ����� 	

Since � is
� � ��� � -safe, we also have

� � � � analz
� � � � ��� � ����� 	

36

C PVS Theories

This appendix containing PVS specifications is included in the interests of making this
report as useful as possible to those who might wish to use it as a starting point for their
own approaches.

The proofs in this report required six new PVS theories: message, parts, ffgg, ideal,
protocols, and results. Four of these are not specific to the ffgg protocol and could be used
for other protocol proofs, although some modifications and extensions might be needed to
handle protocols with new computational operators. These four are: message, parts, ideal,
and protocols.

The theories are listed here essentially as they are in the original files, except that the
statements of a number of trivial lemmas (and a few not-so-trivial ones) are omitted from
message and parts, because they are not important in themselves.

A few of the results named in the report, such as Analz-closure, appear in the listing
with different names, such as (in this case) Analz public. There is a comment in the listing
in each case. Also, the theories ffgg and results are actually called ffgg2 and results2. I have
resisted the urge to clean up the nomenclature further.

Given that the reader is familiar with the PVS specification language, the next most
important thing to point out about the protocol representation used here is that a trace is a
list of events, with the last event cons’d to the left end of the list.

37

message: THEORY

BEGIN

agent: DATATYPE
BEGIN
Server: Server?
Spy: Spy?
User (Id: nat): User?

END agent

pkey: TYPE+
skey: TYPE+

invkey(K1: pkey): pkey
keypair(K1, K2:pkey): bool = (invkey(K1) = K2)

pub(A: agent): pkey
prv(A: agent): pkey
shr(A: agent): skey

field: DATATYPE
BEGIN
Agent (Name: agent): Agent?
Nonce (Seq: nat): Nonce?
Pkey (Pkval: pkey): Pkey?
Skey (Skval: skey): Skey?
Hash (Arg: field): Hash?
Con (Head: field, Tail: field): Con?
Ped (Pcv: pkey, Ptext: field): Ped?
Sed (Scv: skey, Stext: field): Sed?

END field

event: DATATYPE
BEGIN
Said (Src: agent, Dest: agent, Cont: field): Said?

END event

trace: TYPE = list[event]

38

Pkey_inv: AXIOM
FORALL (K: pkey): invkey(invkey(K)) = K

Inv_pub: AXIOM
FORALL (A: agent): invkey(pub(A)) = prv(A)

Unique_pub: AXIOM
FORALL (A, B: agent): pub(A) = pub(B) => A = B

Unique_prv: AXIOM
FORALL (A, B: agent): prv(A) = prv(B) => A = B

Unique_shr: AXIOM
FORALL (A, B: agent): shr(A) = shr(B) => A = B

Pkey_exclusion: AXIOM
FORALL (A, B: agent): pub(A) /= prv(B)

Agent_keypair: AXIOM
FORALL (A: agent): keypair(pub(A), prv(A))

% (some basic lemmas omitted)

END message

%---

parts: THEORY

BEGIN

IMPORTING message

X, Y, Z, W: VAR field
H: VAR trace
Kp: VAR pkey
Ks: VAR skey
A, B: VAR agent
N: VAR nat
E: VAR event
S, S1: VAR set[field]

39

depth(X): nat = reduce_nat(
(lambda (a: agent): 1), % Agent
(lambda (n: nat): 1), % Nonce
(lambda (k: pkey): 1), % Pkey
(lambda (k: skey): 1), % Skey
(lambda (n: nat): n + 1), % Hash
(lambda (n: nat), (m: nat): n + m + 1), % Con
(lambda (k: pkey), (n: nat): n + 1), % Ped
(lambda (k: skey), (n: nat): n + 1) % Sed
)(X)

Pos_depth: CONJECTURE depth(X) > 0

part?(X, Y): RECURSIVE bool =
IF X = Y THEN TRUE
ELSE CASES Y OF
Con(Z, W): part?(X, Z) OR part?(X, W),
Ped(Kp, Z): part?(X, Z),
Sed(Ks, Z): part?(X, Z)

ELSE FALSE
ENDCASES
ENDIF
MEASURE (lambda (X, Y): depth(Y))

parts(S)(X): bool = EXISTS Y: S(Y) AND part?(X, Y)

sees(H)(X): bool = EXISTS E: member(E, H) AND Cont(E) = X

parts_tr(H): set[field] = parts(sees(H))

% (Some basic lemmas omitted)

analz(S)(X): inductive bool = S(X) or
(exists Kp: analz(S)(Ped(Kp, X))

and analz(S)(Pkey(invkey(Kp)))) or
(exists Ks: analz(S)(Sed(Ks, X))

and analz(S)(Skey(Ks))) or
(exists Y: analz(S)(Con(X, Y))) or
(exists Y: analz(S)(Con(Y, X)))

40

analz_tr(H): set[field] = analz(sees(H))

Analz_induct: LEMMA
(FORALL S, S1:

(FORALL X:
S(X)

OR (EXISTS Kp: S1(Ped(Kp, X)) AND S1(Pkey(invkey(Kp))))
OR (EXISTS Ks: S1(Sed(Ks, X)) AND S1(Skey(Ks)))
OR (EXISTS Y: S1(Con(X, Y))) OR (EX-

ISTS Y: S1(Con(Y, X)))
IMPLIES S1(X))

IMPLIES subset?(analz(S), S1))

% (some basic lemmas omitted)

synth(S)(X): RECURSIVE bool =
IF S(X) THEN TRUE
ELSE CASES X OF

Hash(Y): synth(S)(Y),
Con(Y, Z): synth(S)(Y) AND synth(S)(Z),
Ped(Kp, Y): S(Pkey(Kp)) AND synth(S)(Y),
Sed(Ks, Y): synth(S)(Skey(Ks)) AND synth(S)(Y)
ELSE FALSE
ENDCASES

ENDIF
MEASURE depth

% (some basic lemmas omitted)

Fake(E, H, S): bool =
EXISTS A, X:
E = Said(Spy, A, X) AND
synth(analz(union(sees(H), S)))(X)

END parts

%---

ideal: THEORY

BEGIN

41

IMPORTING parts

X, Y, Z: VAR field
Kp: VAR pkey
Ks: VAR skey
NA, NB: VAR nat
A, B: VAR agent
H: VAR trace
S, T: VAR set[field]

secret(S)(X): RECURSIVE bool =
IF S(X) THEN TRUE
ELSE CASES X OF

Con(Y, Z): secret(S)(Y) OR secret(S)(Z),
Ped(Kp, Y): secret(S)(Y)

AND NOT secret(S)(Pkey(invkey(Kp))),
Sed(Ks, Y): secret(S)(Y)

AND NOT secret(S)(Skey(Ks))
ELSE FALSE
ENDCASES

ENDIF
MEASURE depth

% secret(S) is the Thayer-Herzog-Guttman k-ideal I_k[S],
% where "k" consists of all keys whose in-

verses are not secret.
% (This is called J[S] in the report.)
% This is the set of messages from which the spy could
% analyze an element of S.
% (We could have used keys not in S, but some day there will
% be computed keys, e.g., xor(Ks1, Ks2).)

public(S)(X): bool = NOT secret(S)(X)

publics(S)(T): bool = subset?(T, public(S))

basic?(S): bool = FORALL X:
S(X) => (Nonce?(X) OR Pkey?(X) OR Skey?(X))

42

Synth_rank: LEMMA % called ‘‘Synth-
closure’’ in the report

(publics(S)(T) AND basic?(S))
=> publics(S)(synth(T))

Public_part: LEMMA
public(S)(X) OR (EXISTS Y: S(Y) AND part?(Y, X))

Public_trace: LEMMA
publics(S)(analz(sees(H))) OR
(EXISTS X: S(X) AND parts_tr(H)(X))

Public_sub: LEMMA
FORALL (S, T, T1: set[field]):
(subset?(T1, T) AND publics(S)(T)) => publics(S)(T1)

Analz_public: LEMMA % called ‘‘Analz-
closure’’ in the report

subset?(analz(public(S)), public(S))

END ideal

%---

protocols: THEORY

BEGIN

IMPORTING message, parts, ideal

E: VAR event
X: VAR field
H, Hp, H1: VAR trace
S, I: VAR set[field]
P: VAR set[trace]

prefix_closed(P): bool =
FORALL E, H: P(cons(E, H)) => P(H)

safe(S, I)(H): bool =

43

publics(S)(analz(union(sees(H), I)))

protocol(P, S, I): bool =
prefix_closed(P) AND basic?(S)
AND safe(S, I)(null)

extends?(H, Hp): RECURSIVE bool =
IF H = Hp THEN TRUE
ELSE CASES H OF
cons(E, H1): extends?(H1, Hp),
null: null?(Hp)
ENDCASES

ENDIF
MEASURE LAMBDA (H, Hp): length(H)

Extends_trans: LEMMA
(extends?(H, H1) AND extends?(H1, Hp)) => ex-

tends?(H, Hp)

Extends_sub: LEMMA
extends?(H, Hp) => subset?(sees(Hp), sees(H))

First_occ: LEMMA
parts_tr(H)(X)
=> (EXISTS E, Hp:
extends?(H, cons(E, Hp))
AND part?(X, Cont(E))
AND NOT parts_tr(Hp)(X))

Extends_closed: LEMMA
(extends?(H, Hp) AND prefix_closed(P) AND P(H))
=> P(Hp)

Extends_safe: LEMMA
(extends?(H, Hp) AND safe(S, I)(H)) => safe(S, I)(Hp)

Mem_event: LEMMA
(protocol(P, S, I) AND P(H) AND member(E, H))
=> EXISTS Hp: P(cons(E, Hp)) AND ex-

tends?(H, cons(E, Hp))

44

Mem_event_safe: LEMMA
(protocol(P, S, I)
AND safe(S, I)(H) AND P(H)
AND member(E, H))
=> public(S)(Cont(E))

event_safe(P, S, I): bool = FORALL E, H:
(safe(S, I)(H) AND P(cons(E, H)))
=> public(S)(Cont(E))

Secrecy: THEOREM
(protocol(P, S, I) AND event_safe(P, S, I))
=> subset?(P, safe(S, I))

END protocols

%---

ffgg: THEORY

BEGIN

IMPORTING message, parts

A, B, C: VAR agent
X, Y, Z: VAR field
E: VAR event
H: VAR trace
N1, N2, Ma: VAR nat
M: nat % the secret message (nonce)

initial(X): bool =
X = Pkey(prv(Spy)) OR
(EXISTS A: X = Pkey(pub(A))

OR X = Agent(A))

secrets(X): bool =
X = Nonce(M) OR
(EXISTS A: A /= Spy AND X = Pkey(prv(A)))

BigM: AXIOM M > 4

45

a1(E, H): bool = % A -> B: 1 A
EXISTS (A, B):
A /= B AND
E = Said(A, B, Con(Nonce(1), Agent(A)))

bf(E, H): bool = % B -> A: 2 B N1 N2
EXISTS (A, B, C, N1, N2):

E = Said(B, A, Con(Nonce(2), Con(Agent(B), Con(Nonce(N1), Nonce(N2)))))
AND member(Said(C, B, Con(Nonce(1), Agent(A))), H)
AND NOT parts_tr(H)(Nonce(N1))
AND NOT parts_tr(H)(Nonce(N2))
AND N1 /= M AND N2 /= M

a2(E, H): bool = % A -
> B: 3 A {N1 N2 M}PB

EXISTS (A, B, C, N1, N2, Ma):
E = Said(A, B, Con(Nonce(3), Con(Agent(A), Ped(pub(B),

Con(Nonce(N1), Con(Nonce(N2), Nonce(Ma)))))))
AND (B /= Spy OR Ma /= M)
AND NOT parts_tr(H)(Nonce(Ma))
AND member(Said(C, A, Con(Nonce(2),

Con(Agent(B), Con(Nonce(N1), Nonce(N2))))), H)

bg(E, H): bool = % B -
> A: 4 N1 N2 {N2 M N1}PB

EXISTS (A, B, C, X, Y, N1, N2):
E = Said(B, A, Con(Nonce(4), Con(Nonce(N1),

Con(X, Ped(pub(B), Con(X, Con(Y, Nonce(N1))))))))
AND member(Said(C, B, Con(Nonce(3), Con(Agent(A),

Ped(pub(B), Con(Nonce(N1), Con(X, Y)))))), H)
AND member(Said(B, A, (Con(Nonce(2), Con(Agent(B),

Con(Nonce(N1), Nonce(N2)))))), H) % B checks A and N1
AND NOT EXISTS Z: % B has not sent this before

member(Said(B, A, Con(Nonce(4), Con(Nonce(N1), Z))), H)

ffgg(Q: trace): RECURSIVE bool =
CASES Q OF
cons(E, H) : ffgg(H) AND

(Fake(E, H, initial)
OR a1(E, H)

46

OR bf(E, H)
OR a2(E, H)
OR bg(E, H)),

null : TRUE
ENDCASES MEASURE length

concurrent?(H): bool % definition TBS: no ff’g or fg’g

Conc_persists: LAW
FORALL E, H: concurrent?(H) => concurrent?(cons(E, H))

END ffgg

%---

results: THEORY

BEGIN

IMPORTING message, parts, ffgg, ideal, protocols

A, B, C: VAR agent
X, Y, Z: VAR field
E: VAR event
H: VAR trace
N1, N2: VAR nat

Basic_secrets: LEMMA
basic?((secrets))

Secret_secrets: LEMMA
initial(X) => public(secrets)(X)

Initial_public: LEMMA
subset?(analz(initial), public(secrets))

ffgg_prefix: LEMMA
prefix_closed((ffgg))

fgfg(H): bool = ffgg(H) AND NOT concurrent?(H)

47

fgfg_protocol: LEMMA
protocol((fgfg), (secrets), (initial))

Mem_pub: LEMMA
(member(E, H) AND ffgg(H) and safe((secrets),(initial))(H))
=> (public((secrets))(Cont(E)) OR concurrent?(H))

Main_lemma: LEMMA
event_safe((fgfg), (secrets), (initial))

END results

48

D The Concurrent Case

Below is the last remaining case in the proof that the fgfg example protocol is secure. This
is a PVS sequent, with a conjunction of hypotheses above the line and a disjunction of
conclusions below the line. At this point in the proof, one hypothesis is hidden, namely,
that X is secret. Note, however, that X is exposed in the message named e, which is the last
message in the trace cons(e, evs).

The hypotheses in this case indicate that certain messages have occurred and give con-
straints on their order which imply concurrency, in the sense that two sessions are not seri-
alizable.

The names of messages, variables, and initial segments (tails) of the trace were not well
chosen, so a few remarks are offered here to help explain the logic. For brevity, we write
cons(a, b) as a.b.

By [-1], e.evs is a legal trace of ffgg. The secrecy theorem would say that e.evs is
”safe,” meaning that no transmitted message is secret.

Let e3 = the message in [-6].
The messages e, e1, e2 and e3 are messages sent by B from two sessions corre-

sponding to the nonces Z1 and N1!2. Each message contains a number (2 or 4) identifying
its sequence within the protocol. The next nonce is unique to the session and is consistent
between messages 2 and 4. (The protocol checks it.)

By [-1] e follows (in time) any message in evs, which includes all the other messages.
e2.Hp1 and e1.Hp2 are right-prefixes of evs by [-7] and [-8]. Note that time goes from
right to left in these traces.

e2 follows any message in Hp1, and it must precede e1 since Z1 does not occur in
Hp1 by [1].

Then e3 is in Hp2 and hence precedes e1. Thus, � e2, e3
�

precedes e1 precedes e.
e2 and e3 are both type 2, e and e1 are type 4. This implies concurrency since it means
neither the Z1 session nor the N1!2 session can complete before the other one begins.

Main_lemma.5.3.1.3.2.1.3.1.5.2.2.2.1 :

[-1] ffgg(cons(e, evs))
[-2] e = Said(B, A, Con(Nonce(4), Con(Nonce(Z1),

Con(X, Ped(pub(B), Con(X, Y))))))
[-3] Said(B, A, (Con(Nonce(2), Con(Agent(B), Con(Nonce(Z1),

Nonce(N1)))))) = e2
[-4] e1

=
Said(B, A!2,

Con(Nonce(4),

49

Con(Nonce(N1!2), Con(Nonce(Z1), Ped(pub(B),
Con(Nonce(Z1), Y!1))))))

[-5] member(Said(C!2, B,
Con(Nonce(3),

Con(Agent(A!2),
Ped(pub(B),

Con(Nonce(N1!2), Con(Nonce(Z1), Y!1)))))),
Hp2)

[-6] member(Said(B, A!2, (Con(Nonce(2), Con(Agent(B),
Con(Nonce(N1!2), Nonce(N2!2)))))), Hp2)

[-7] extends?(evs, cons(e1, Hp2))
[-8] extends?(evs, cons(e2, Hp1))
[-9] protocol((fgfg), (secrets), (initial))
[-10] safe((secrets), (initial))(evs)
[-11] ffgg(evs)
|-------

[1] parts_tr(Hp1)(Nonce(Z1))
[2] B = Spy
[3] concurrent?(cons(e, evs))

50

Protocol-Independent Secrecy
�

Presented at 2000 IEEE Symposium on Security and Privacy

Jon Millen and Harald Rueß
SRI International

Menlo Park, CA 94025, USA�
millen,ruess � @csl.sri.com

Abstract

Inductive proofs of secrecy invariants for cryptographic protocols can be facilitated
by separating the protocol-dependent part from the protocol-independent part. Our
Secrecy theorem encapsulates the use of induction so that the discharge of protocol-
specific proof obligations is reduced to first-order reasoning. Secrecy proofs for
Otway-Rees and the corrected Needham-Schroeder protocol are given.

1 Introduction

Cryptographic protocols are used to achieve goals like authentication and key distribution.
In the analysis of these protocols, however, it is important to establish not only that these
goals are actually met, i.e. that ‘something good is going to happen’, but also to prove that
no secrets are being revealed, i.e. it is never the case that ‘something bad is happening’. In
this paper we concentrate on proving secrecy invariants of cryptographic protocols, since
these kinds of proofs have often been found to be the hardest task in analyzing a protocol.
More precisely, secrecy has been shown to be undecidable even under very weak assump-
tions on the protocol [2].

Our starting point is the inductive approach developed by Paulson [7]. In this model,
a protocol is a rule for adding message events to a trace of prior events. A trace may
involve many interleaved protocol runs. For purposes of analysis it is assumed that protocol
messages sent over a network are also accessible to a hostile “spy” who is able to read,
alter, and forge messages. Paulson uses a theorem prover to partially automate proofs by
developing specialized strategies.

�
This work was funded by DARPA through the Air Force Research Laboratory Contract F30602-98-C-0258

and by DARPA through Rome Lab contract F30602-96-C-0291.

51

The main contribution of this paper is a theorem that reduces secrecy proofs for proto-
cols to first-order reasoning; in particular, discharging these proof obligations does not re-
quire any inductions. The trick is to confine the inductions to general, protocol-independent
lemmas, so that the protocol-specific part of the proof is minimized.

In order to formulate our results, we borrow the notion of ideals on strand spaces [9],
and we show how this concept is useful in a trace model context for stating and proving
secrecy invariants. We show how the complement of an ideal, which we call a coideal,
serves as a catalyst to apply Paulson’s calculus-like set operators. Our protocol model is
also unusual in that message events are interspersed with “spell” events that generate the
short-term secrets in a session and specify which principals are supposed to share them.

We originally intended this investigation to support our work in applying a theorem
prover to inductive protocol proofs. However, we discovered that these techniques are so
effective that we could perform some proofs by hand using them. Manual proofs have been
done before, such as the strand-space proofs in [9] and Schneider’s CSP proofs [8], but not
for Paulson’s trace model, and not for a difficult protocol like Lowe’s corrected version of
the Needham-Schroeder public key protocol [4]. Examples of secrecy proofs are included
here for that protocol and for the Otway-Rees [6] protocol.

2 The Modeling Approach

Our modeling approach closely follows Paulson’s [7], although the details of the notation
are different. A protocol is a rule for adding messages and other events to a history or
trace of past events, represented as a sequence. Encrypted message fields are represented
symbolically by terms indicating the key and plaintext field.

2.1 Fields

The modeling task begins by defining the primitive data types that may occur as message
fields: agents � , keys � , and nonces � . (In another context we might use “principal”
instead of “agent.”) These sets are assumed to be disjoint, and they are all subtypes (subsets)
of the field type � . As a notational convention, variables ����� and variants always stand
for agents; 	 and variants always stand for keys; and
 and variants are always nonces.� ���� and � are arbitrary fields.

Each agent � has some long-term keys: a public key ����������� , a corresponding private
key ����������� , and a symmetric key � ���!���"� . The set of long-term keys is denoted �$# . We
assume that short-term keys are symmetric keys, and they are in the set �$% .

52

The basic fields are those in the set ��� � . These are the kinds of primitive fields that
may be designated as secret according to the policy that the protocol is supposed to uphold.
Agents and compound fields are never designated as secret by policy, though some com-
pound fields may have to be protected to maintain the secrecy of some of their components.

Compound fields are constructed by concatenation or encryption. The concatenation of�
and � is the term

� ��� . We will add brackets, as � � ����� , when necessary to separate a
concatenation from its context to avoid confusion. The concatenation operator is binary but
associative, so that it may be viewed as n-ary, and a term like � � ���� ��� is unambiguous.

The encryption of
�

using the key 	 is
� � ��� , regardless of the type of key. Each key

	 has an inverse 		��
 such that
� � � ��� � ������ �

(1)� � � � ���� ��� � �
(2)

in the sense that these terms are regarded as equivalent. For any agent � ,

����������� ��
 � ���������"� � (3)

����� ����� ��
 � ����������� � (4)

� ��� ����� ��
 � � ���!���"��� (5)

There are two special agents: � ��� , a trusted server assumed to hold the symmetric (and
thus, shared) key � ��� ����� of any agent � ; and the intruder � ��� .

Given sets � , � , and � , and the operators whose signatures and relations have just
been given for them, there is an initial algebra generated by them [5]; this algebra is the
cryptospace of fields. It is an idealized abstraction of the true set of message fields in several
ways. For example, there may be an infinite number of nonces and keys, and repeated
encryption with the same key generates an infinite number of values.

2.2 Events

There are two kinds of events: messages and spells. Messages are essentially Paulson’s
Says events, and spells may be thought of as a variation on the Notes event, but with a
different purpose.

A message is an event ��� ��� � , where (as implied by our notational conventions)
� and � are agents, and

�
is a field. The content

�
of a message event � is denoted by

� . The sender � and the receiver � will always be the true sender and intended receiver,
as in Paulson’s model.

A spell generates certain session-specific primitive fields and designates them as secret.
A spell is an event ���! , where � is a set of short-term basic fields called the book, and ,

53

the so-called cabal, is a set of agents who are permitted to share the secrets in � . The book
and the cabal of a spell event � are denoted by ��� and ��� , respectively.

As a notational convention, we use � (and variants) to denote events, while � is a
message and � is a spell.

A trace is a finite sequence of events. Notationally, variants of � are traces. We indicate
trace concatenation or postfixing an event to a trace with juxtaposition, e.g., ��� , and �	�
� means that � occurs in the sequence � , so that � � ��
����

 . The empty trace is � .

We extend the notion of a content to traces in the natural way. Spells do not contribute
to the content.

� � � � � � ��� � �

2.3 Inductive Relations

The fundamental operations on sets � of message fields, as introduced by Paulson, are
��� ��� � � � � , ������� � � � � , and � ����� ��� � � .

Briefly, ������� � � � � is the set of all subfields of fields in the set � , including components
of concatenations and the plaintext of encryptions (but not the keys). Note that if

� �
��� ��� � � � � � � then

�
is a subterm of � , in the sense of [9], written

��� � . The subterm
relation is a partial order.

������� ��� � � is the subset of ������� � � � � consisting of only those subfields that are accessible
to an attacker. These include components of concatenations, and the plaintext of those en-
cryptions where the inverse key is in ������� � � � � . Thus, ������� � � � � is defined to be the smallest
set such that

1. � � ������� � � � �
2. if � � �����!�"������� ��� � � then

� �"������� � � � � and �#��������� � � � �
3. if

� � � �$��������� � � � � and 	 ��
 �"������� � � � � then
� �"������� � � � � .

Finally, � ���%� � � � � is the set of fields constructible from � by concatenation and encryp-
tion using fields and keys in � .

The following properties are stated, for similarly defined sets, in [7]. They are all proved
by straightforward inductions.

Proposition 1 The set transformers ��� ��� � � � � , ������� � � � � , and � ���%� ��� � � are closure opera-
tors – that is, they are extensive (�&� �����'� � � � �), monotonic, and idempotent. Furthermore:

������� � �(������� � � � � � � ������� � � � � (6)

54

������� � � ������� � � � � � � ������� � � � � (7)

������� � � � ���%� � � � � � � ������� � � � � � � � ��� ��� � � (8)

������� � � � ���%� � � � � � � ������� � � � � � � � ��� ��� � � (9)

The intruder in our model synthesizes faked messages from analyzable parts of a set of
available fields. This motivates the definition of

� ������� � � .

Definition 1
� ����� � � � � � ���%� � �(������� � � � � �

Lemma 1 (Fake-Parts)

��� ��� � � � ������� � � � � ��� ��� � � � � � � ������� � �

Proof. Using the equalities in Proposition 1.

������� � � � ������� � ��� � ������� � �(������� � � � ��� � � ������� � � � �����'� � � � � � � ����� � � � .

3 Ideals and Coideals

If the spy ever obtains some secret field
�

, it can transmit
�

as the content of a message.
Thus, our secrecy policy is that if ��� ��� �

occurs in some trace, then
���� � , where �

is a set of basic secrets.

The invariant that we will actually prove is that
� ��	� � � � , where �"� � � is the ideal

generated by � : the smallest set of fields that includes � and which is closed under con-
catenation with any fields and under encryption with keys whose inverses are not in � . � � � �
is the
 -ideal �� � � � from [9] where
 is the set of keys whose inverses are not in � .

With our choice of
 , the ideal is defined as follows:

Definition 2 (Ideal) � � � � is the smallest set such that

1. � ��� � � �
2. if

� ���"� � � or �	��� � � � then � � ��� � ��� � � �
3. if

� ���"� � � and 	 ��
 �� � then
� � � �$��� � � �

Under the assumption that any term not in the ideal may be already compromised, it
is necessary to protect this whole ideal, because compromising any element of the ideal

55

effectively compromises some element of � . It turns out that protecting this ideal is also
sufficient.

The complement of � � � � , which we call a coideal, is denoted by � � � � . The coideal
� � � � defines the set of fields that are public with respect to the basic secrets � , i.e., fields
whose release would not compromise any secrets in � .

The property that makes the notion of “coideal” worth defining is that coideals are
closed under attacker analysis, thereby implying that protection of the ideal is sufficient.

Lemma 2 (Analz Closure) For a set � of fields:

������� ����� � � ��� � � � � �

Proof. The right-to-left inclusion follows from extensivity of ������� � � � � (Proposition 1). We
apply the smallest-set definition of ������� � � � � to show

������� � ��� � � ������� � � � .
We have to show that � � � � is closed under the two rules that expand ������� � � � � .
First, suppose � � ����� ��� � � � . That is, � � ����� �� � � � � . Hence neither

�
nor � is in � � � �

by definition of the ideal, so both are in � � � � .
Second, suppose

� � � � ��� � � � and 	 ��
 � � .
� � ��� �� �"� � � implies that either� �� � � � � or 	 ��
 � � � � � . The first subcase is trivially finished and the latter subcase

contradicts the assumption 		��
���� .

An analogous result does not hold for synthesis in general, but depends on the primi-
tiveness of the elements generating the coideal.

Lemma 3 (Synth Closure) For a set � of basic fields:

� ���%� ����� � � � � � � � � �

Proof. The left-to-right inclusion is extensivity (Proposition 1). So it remains to show

� ���%� ����� � � � ����� � � ���
We must show that � � � � is closed under the two rules that expand � � ��� ��� � � .
First, let

� ��� � � � and � ��� � � � . We must show that � � � � � ��� � � � . Otherwise,
� � � � � � � � � � , either because � � ����� ��� or because

�
or �#���"� � � . The former cannot

be true because � is primitive and the latter would contradict the hypothesis for this case.

56

Second, let
� � � � � � and 	 � � � � � . We must show that

� � ��� � � � � � . Otherwise,� � ��� � �"� � � , either because
� � � � � � , not possible for primitive � ; or partly because� ��� � � � , which contradicts the hypothesis for this case.

Lemmas 2, 3 are typically used to reduce proof obligations like ������� ��� � � ��� � � � to� ��� � � � ; similarly for � ����� ��� � � .

4 Protocols and Secrecy

A protocol specifies which messages or spells can be appended to an event trace. A secret
in a spell book must be unused in the prior trace, in the sense that it is not a part of any
message content and it has not occurred as a secret in a prior spell.

Definition 3 (Unused)
If � is a trace,

�
is unused in � if

�
is basic,

� �� ������� � � � � , and
� �� ��� for any

� �"� . The set of unused fields in � is denoted by ����� � ��� � � � .

Definition 4 (Protocol)
A protocol is a binary relation between traces and events, such that if � � � ��� ��� then
��� � ����� � ��� � � � .

A plenum is a set of traces that could be generated by a protocol in an environment with
intruder activity, given some set of fields � assumed initially held by the intruder.

Definition 5 (Plenum)
If � is a protocol then the plenum ��� �	��� is the set of traces defined inductively by:

1. ���
��� �	� �
2. If � ����� �	��� and � � � � � �� then ���#����� �	���
3. If � ����� �	��� and � is a message from � � � with � � � � ��� ���(������� ��� � � � � � then
��� �
��� �	���

A message is called honest (for ��� �	���) if it has been introduced to a trace by means of rule
(2) above, while messages introduced by (3) are fake.

Because protocol spell books introduce unused secrets, it is easy to show that the spell
books of different spells are disjoint.

57

Lemma 4 (Disjoint Book) If � � �
 ��� ����� �	��� then either � � �
 or �������
� � � .

The basic secrets associated with a spell include not only the elements of the spell book
but also the long-term secrets of the agents in the cabal.

Definition 6 (Basic Secrets) Let � be a spell;

��� � ��� � � ����������� � �$����� � � � � ���!���"��� � ����� �

A spell is compatible with an initial knowledge set that does not compromise its asso-
ciated basic secrets, or mention the short-term secrets in its book.

Definition 7 (Compatible Spell) A spell � is � -compatible if

1. � ��� � ��� � and

2. ����� ������� � � ��� � � .

A trace is occult for an initial � if it protects the basic secrets of any spell compatible
with � .

Definition 8 (Occult Trace)
A trace � is I-occult if, for all � -compatible spell events � ��� ,

������� � � � � ��� � � � ��� �

A protocol is secure with respect to its secrecy policy and the spy’s initial knowledge
if every trace in the plenum it generates is occult. The secrecy proof for a protocol has a
protocol-independent part and a protocol-dependent part. The protocol-dependent part is
expressed by the event-occult property defined below. It says that if the prior trace is occult,
the next message event generated by the protocol does not compromise a secret. This has
to be proved individually for each protocol.

Definition 9 (Event-Occult)
A protocol � is event-occult if, for all � , � , and � satisfying the conditions:

1. � ��� ����� �	��� such that � is � -occult,

2. � � � � � � � , and

3. � is � -compatible

58

it is the case that � ��� � ��� � .

The protocol-independent part of a secrecy proof is the Secrecy theorem. It only has to
be proved once.

Theorem 1 (Secrecy)
If � is event-occult then every trace in � � �	��� is � -occult.

Proof. By induction on the trace � . If � � � then there is nothing to prove, since �
contains no spell.

Consider a trace ��� � � � �	� � . We have � � � � �	��� and � � � � � � � . The induction
hypothesis is that � is � -occult. For the induction step, we must show that ��� is � -occult.

Choose a spell � � � such that ��� � � � � � and ��� � �����'� � � � � � �
. We must show that

������� � � ��� � � � ��� � � � � .
The event � might be either a message or a spell. Suppose first that � is a message. It
might be either honest or fake. In either case � � � � � � � . For, if � is honest, this is true
because � is event-occult. If � is fake, � � � ������� � � � � . By the induction hypothesis,
monotonicity of synth, and the Synth-Closure lemma, we have

� ������� � � ��� � � ����� ���(������� � � � � � � � � � � ��� ����� � ��� � � � � � ��� � �

Now we observe that:

��� � � � � � � � � � �
� � � � ��� � as just shown
� ��� � � � � by choice of �
� � ������� ��� � � � � ��� � ��� �
Hence ��� � � ��� � ��� �
By monotonicity of ������� � � � (Proposition 1) and Analz-Closure (Lemma 2) we
are done with this case.

Now, let � be a spell. We have

������� ��� ��� � � � � ������� � � � � ��� � � � ��� �

In the following sections we give examples of proofs of the event-occult property for
two protocols, from which we may conclude, by the Secrecy theorem, that their traces are

59

occult. These are strictly secrecy results, and show only that the secrets generated in a
particular run of the protocol are not compromised. Most authors of protocol proofs have
noted that the security objectives of a protocol may be undermined in other ways than
by compromising secrets, usually due to some failure of authentication. We discuss this
concern in the Conclusion.

5 Example: The Otway-Rees Protocol

The Otway-Rees protocol is a good one to begin with because the proof is short. Also this
protocol was used as an example in [9], so that one can make a comparison between the
effort required here with the effort required to do the secrecy part of the strand-space proof
in that paper (which was also fairly short).

The goal of the Otway-Rees protocol is to mutually authenticate an initiator and respon-
der and to distribute a session key generated by the server. One session consists of the four
messages in Figure 1. We prove that none of the secrets
 � ,
�� , or 	 are disclosed.

���

 � � � � �"
 ��� ��� � �
 � ��
 ��� ��� � � ���!�����

����� � � ��� ��� �"
 ������� � �
 � ��
 ������� � � �������"� �
�
�� ��
 ������� � � �������$�

����� � � ����� � �"
 � �
 � ��	 � � ��� ���"� �
�
�� ��	 � � ��� ���$�

���
	 � � � � �"
 � �
 � ��	 � � ���!�����

Figure 1: The Otway-Rees Protocol

The informal rules in Figure 1 are easily, albeit somewhat tediously, encoded in the
trace model, in roughly the way Paulson would do it, except for the spell event. The spell is
specified by �� , which generates the two nonces
 � ��
�� � and the session key 	 . Note that
the server need not be mentioned in the cabal.

The relations ���
 ,
��� � , ����� (in Definition 11) on message events � and traces � cor-

respond to the messages in the informal description of the protocol. Relation ����� � � � � �
holds when rule ����� is used to generate message � . A message is not sent unless there
is a suitable prior history of messages sent and received by the sending agent. Rules that
introduce nonces take them from a prior spell with the expected cabal. When an agent uses
a secret from a spell book, the agent does not see any of the other secrets in the same spell
book, though it might know about them from prior messages.

In general, a trace generated by these rules interleaves the behavior of as many agents
as we wish, and any number of concurrent or sequential sessions of the same agents. Also,

60

once a message is enabled, it can be added to the trace any number of times. This is
unrealistic, but it is a possible consequence of attacker behavior, and it does not affect
secrecy conclusions.

Definition 10 (Otway-Rees) OR is the union of the relations

� � � � � � � � � �
 � ��
�� ��	 ������� �

 � ��
�� ��	�� ����� � ��� � � �

� � � �
 � ��
�� ��	 � � � ����� �
���

 � � � � � � � � � ��� ��
 ��
 � � � �

 � ��� � ��� � � ����� �
� � � � � ���
 ��� ��� � �
 � ��
 ������� � � �������"�

��� � � � � � � � � � � ���
 ��� � � ��
 ��
�� � ���

�� ��� � ��� � � � ��� �

� �
 � � �"
 ��� ��� � � ���
� � � � � � ��� ��
 ��� ��� � � � �
�� ��
 ������� � � ���!���$�

����� � � � � � � � � � ��� ���
 ��
 ��
 � ��
�� ��	 � � �
	��"� � � � � � ����� �

� �
 � � � � �"
 ������� � �
 � ��
 ��� ��� � � ��������� �
�
�� ��
 ������� � � ������� � ���

� � � � ��� � � ��
 � �
 � ��	 � � ��� ���"� �
�
�� ��	 � � ��� ��� �

���
	 � � � � � � � � � ���
 ���
 �����
 � ��
�� ��	 �
� � � � � ��
 ��� ��� � � � �
�� ��
 ��� ��� � � ��� ���$� ���

� � ����� ���"
 ���� �
�� ��	 � � ���!���$�
� � � � � � �"
 ���

OR is a protocol in the sense of Definition 4, since � � only puts previously unused fields
into the book. From the Secrecy Theorem 1 and the following lemma it follows that OR is
secure.

Theorem 2 The OR protocol is event-occult.

Proof. Let � be OR and choose � . Let � � � � � ��� , where � � � � �	��� such that � is
� -occult. Let � ��� such that � ��� � � � � and ��� � ������� � � ��� � � . We have to show

� ��� � ��� � .

61

There are four message rules.

First, consider the case � � � � � � ���
 ; then:

� � ��� ���
 ��� ��� � �
 � ��
 ������� � � ���!�����
�
 � �
 � ��
�� ��	 � � � � ��� � ���

Notice that
 �� ��� , because
 is unused, and � ��� �� � � because they are agents. Now
consider the encrypted term.

Case � ��� � . Then � ��� ����� ����� ; so � �� � � ��� � .
Case � ���� � . Then �
��� � , so
 � �� ��� . Hence, � �� � � ��� � .

Second, in case � � � � � � ��� � ,
� � � ��� ��� �
 ��� ��� � � � �
�� ��
 ������� � � ��� ��� �
�
 � �
 � ���"
 ������� � � ���

where
 � � �
� and �
� � � ����� � . Since �
 � � and � is � -occult, ������� ��� � � ��� �
� � ��� � . But the unencrypted terms
 ������� � � � ������� ��� �
 � � ������� � � � � ��� so

 ��� ��� � � ��� � ��� � . The encrypted term is also in the coideal, using the same arguments
as for ���
 .
Third, in case � � � � � � ����� ,

� � � � � � ���"
 � �
�� ��	 � � �������"� �
�
�� ��	 � � ��� ��� �

� � � �
 � � ��� ��
 ������� � �
 � ��
 ������� � � ��� ���"� �
�
�� ��
 ��� ��� � � �������$� ���

and there exists a spell �
 ��� such that 	����
� and �
� � � � ��� � .

We know
 � � � ��� � because it came from � � . The first encrypted term of � is in the
coideal if �#� � � . Otherwise, assume � �� � � . We know ���� �
 and we must consider
the components
 � ��	 . 	 �� ��� , so 	 � � � ��� � . As for
 � , it comes from a term in � �

encrypted with � ���!���"� , so
 � � � � ��� � because � is � -occult.

The same argument can be used for the second encrypted term and
 � .

The fourth case � � � � � � ��� 	 is trivial because the message fields have been copied from
a received message in � , which is � -occult.

6 Example: The Needham-Schroeder Public-Key Protocol

62

The Needham-Schroeder public-key protocol is a more challenging example, which to
our knowledge has not been verified by hand before. The original protocol was found to
be flawed by Lowe, who suggested a change in one message that made it secure, as far as
he could tell from a model-checking analysis [4]. We demonstrate the applicability of the
secrecy theorem (Theorem 1) by proving that Lowe’s corrected version of the protocol,
which we refer to as NSL, is secure.

�
 � � � ��� �
 � � � � ���������$�
� � � � � � � �
 � �
�� ��� � ����� �����
� � � � � ��� �
�� � ���������$�

Figure 2: The Needham-Schroeder-Lowe Protocol

The informal description of the NSL protocol is in Figure 2. Here is the trace relation
version.

Definition 11 (NSL Protocol)
The protocol
 �! is defined as the union of the binary relations � � , �
 ,

� � , and � � .
� � � � � � � � � � � ��� ��
 � ��
����

 � ��
�� � ����� � ��� � � �
� � � �
 � ��
�� � � � ����� �

�
 � � � � � � � � � ��� � � ��
 � �
� ��� �
 � ��� � � � � � � � ��� �

� � � � � ��� �
 � ��� � ����� ���$�
� � � � � � � � � � � ��� ���
 � � ��
 � ��
�� �

� ��� �
�� �"��� � ��� � � ����� �
� �
 � � � �
 � ��� � ����� ���$� ���
� � � � � � � �
 � ��
�� ��� � ����� �����

� � � � � � � � � � � ��� ���
 ��
 � ��
�� �
� � ��� �
 � ��� � ����� ��� � �"�

� �
 � � � �
 � ��
�� ��� � ����� ���"� �"�
� � � � � ��� �
�� � ����� ���$�

It is immediate from the definition of NSL that secrets in spells are unused in the prior
trace, thus NSL is a protocol in the sense of Definition 4.

63

Theorem 3 (NSL Protection)
The NSL protocol is event-occult.

Proof. Let � be the NSL protocol and choose � . Let � � � � � � � , where ���
� � �	��� such
that � is � -occult. Let � � � such that ��� � � � � � and � � � ������� � � ��� � �

. Since � is
� -occult, ������� ��� � � � � ��� � ��� � � We have to show that � � � � � � � .
There are three message rules.

Case 1. �
 � � � � � .
� � �
 � � � �
 � � � � ����� ���$�

and �
!��� such that
 � � �
� and �
� � � ����� � . If � � � � then � ��� ���$� � � � and the
encrypted term is in the coideal. Otherwise, assume � ���� � . Then � �� �
 and
 � ������ .
This fact, together with � ���� � � � � yields � ���� � ��� � .
Case 2.

� � � � � � � .
� � � � � � �
 � �
�� � � � ����� ���"�

and there must exist
�
 � �
 � � � �
 � � � � ����� ���$� ���

and �
 ��� such that
�� �"�
� and �
� � � ����� � .

If � � ��� then � �� � � ��� � and we are done. Suppose � �� � � . Then we must show that

 � ��
�� , and �	� � � � � � .
�� is handled like
 � in the first message and � is an agent. It is
also trivial for
 � if � ������ because
 � is then exposed in �
 and � is � -occult.

We must show that
 � �� ��� if we assume that � � � � . Find the earliest occurrence of
the subterm �
 �

�
 � ��� � ����� ���$� . That is, there is a message �$
 whose content has

�
 as a subterm, and �
 is not a part of the prior trace �
 . Also, �

�� ������� � � ��� unless

 � � ������� � � ��� , in which case
�� ������ by choice of � .

�
 might be either faked or honest. If �
 is faked, �
 � �����'� � � � � � ��� ��
 � � ��� �
��� ��� � � ��
 � ��� � � � � ��� �"
 � � � so that we must have �
 �

� ������� �"
 � � � . Since �

��

��� ��� � � ��
 � ��� it must have been synthesized, meaning �
 � � � ��� � ������� ��
 � ��� � � � ��� � ,
so
 � ���� � .

If �
 is honest, inspection of the rules and the message component types shows that �
 �
�
 and �
 � �
 � �
 � holds. But the analysis of rule �
 has already been covered in the first
case.

Case 3. � � � � � � � . If the receiving agent � of � is in the cabal, then the content is not in
the ideal. Thus, assume that � is not in the cabal. From the definition of � � ,

�
 � � � � � �
 � � � � ����� ���$� �"�

64

� � � �
 � � � �
 � �
�� � � � ����������� � �
� � � � � � �
�� � ����� ��� �

and one has to show
 �
������ .

If � � is honest, then there exists a prefix �
 of � such that
� � � �
 � � � � and there exists �

with
�� ���
� and �
� � � ����� � . But � ������ , so � �� �
 and
��
������ .

Note that this step fails if the sender of � � does not occur in the encryption field, since then
we could not say (in the rule) that � � �
� . This is the difference between NSL and the
original protocol.

If � � is faked, find the earliest message �
 containing � � as a part, where the prior trace
is �"
 . By choice of �
 , � � �� �����'� � � ��
 � . Also, � � �� ������� � � ��� , otherwise
 � � ������� � � ��� ,
and we have assumed ������� � � ��� � � � � �

, so
��
�� ��� and we would be done. So � � ��

��� ��� � � ��
 � ��� .
If �
 is faked, we have

� � � ��� ��� � � � ������� ��
 � ����� � ������� � � �"
 � � ��� � � � ��� �"
 � � �
so

� � � � ������� �
 � � � � � ���%� � �(������� � � �
 � � ��� �
Since � � �� ������� � � ��
 � ��� it must be that � � has been synthesized, so

 � �
�� � �	� � ������� �
 � �����

But
� ������� �
 � ��� ��� � �
 � ��� since � is � -occult, implying that
 �

������ .

If �
 is honest, inspection of the protocol rules shows that �
 � � � and
� � � � � � � � , and

this case was covered previously.

7 Conclusions

Our secrecy theorem separates protocol-dependent and protocol-independent aspects of se-
crecy proofs. The protocol-dependent part is to show the “event-occult” property, which
only asks whether honest messages compromise secrets, given strong assumptions about
the preservation of secrecy in the prior message history.

The secrets to be protected are defined in an explicit, uniform way by introducing
“spell” events into the protocol. Spell events generate the short-term secrets for a particular
“cabal,” the set of agents sharing the new secrets. Secrets are shown to be protected even

65

when the long-term secrets of other agents, or the short-term secrets in other protocol runs
(with other spells) are compromised.

The security of a protocol can be subverted even when the secrets it generates are pro-
tected. To take a simple example, consider the single-message key-distribution protocol:

��� ��� ��� � 	 � ����� ���$� �

We can show that the session key 	 is kept secret. However, � would be foolish to believe
that 	 came from � and use it to encrypt information to be shared only with � .

There are two ways to avoid this kind of problem. One is to conduct a separate au-
thentication proof, and attempt to establish that the key received by � was actually sent
by � , and is fresh. If both the secrecy proof and the authentication proof succeed (and the
second will fail in this example), the protocol would be shown secure. While most authors
who have developed analysis techniques for secrecy have extended those techniques to per-
form authentication proofs as well, we should consider that there are some very appealing
authentication logic techniques designed for this purpose [1, 3]. Their only drawback is
that they cannot show secrecy properties. It would be ideal to use them in a context where
secrecy has already been shown.

If the ultimate objective is really to show secrecy, not for the session key per se, but for
some text encrypted with it, then there is another way to focus on the correct goal: include
the use of the key in the protocol. To do this, add one or more statements to the protocol
specification. In the example above, we could add the message:

� � � � �
 ���
where
 is a new secret. The augmented protocol is not event-occult.

The closure results on the coideal have turned out to be a useful addition to the arsenal
of proof techniques, enabling interesting examples to be shown secure. Protocol proofs are
still complex enough so that we feel proof-checking and automation to be valuable for the
sake of assurance, and we believe that the same techniques that simplify manual proofs will
also be helpful in organizing machine-assisted proofs.

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions
on Computer Systems, 8(1):18–36, 1990.

[2] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Formal Methods and Security Protocols, Federated Logic Conference,
1999.

66

[3] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic pro-
tocols. In IEEE Symposium on Research in Security and Privacy, pages 234–248. IEEE
Computer Society, 1990.

[4] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Proceedings of TACAS, volume 1055 of Lecture Notes in Computer Science, pages
147–166. Springer-Verlag, 1996.

[5] J. Meseguer and J. Goguen. Initiality, induction, and computability. In M. Nivat and
J. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541. Cambridge Uni-
versity Press, 1982.

[6] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating
System Review, 21(1):8–10, 1987.

[7] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6(1):85–128, 1998.

[8] S. Schneider. Verifying authentication protocols in CSP. IEEE Transactions on Soft-
ware Engineering, 24(9):741–758, September 1998.

[9] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In 11th
IEEE Computer Security Foundations Workshop, pages 66–78. IEEE Computer So-
ciety, 1998.

67

Local Secrecy for State-Based Models
�

Presented at FMCS’2000

Jon Millen and Harald Rueß
SRI International

Menlo Park, CA 94025, USA�
millen,ruess � @csl.sri.com

Abstract

Proofs of secrecy invariants for cryptographic protocols can be facilitated by sep-
arating the protocol-dependent part from the protocol-independent part. Our Secrecy
theorem encapsulates the use of induction so that the discharge of protocol-specific
proof obligations is reduced to first-order reasoning. The theorem has been proved
and applied in the PVS environment with supporting protocol representation theo-
ries based on a state-transition model. This technique has been successfully applies
to both standard benchmark examples and to parts of the verification of the Enclave
group management system.

1 Introduction

Cryptographic protocols are used to achieve goals like authentication and key distribution
in a hostile internet environment. Formal methods can be used to verify the adequacy of the
design of such protocols. Security goals are often formalized as invariants. In this paper we
concentrate on proving secrecy invariants, which are important both for their own sake and
to support authentication goals.

The main emphasis of this paper lies in the description of our PVS [5] formalization of
the secrecy theorem published in [3]. This theorem reduces secrecy proofs for protocols to
first-order reasoning; in particular, discharging these proof obligations does not require any
inductions. The trick is to confine the inductions to general, protocol-independent lemmas,
so that the protocol-specific part of the proof is minimized. Moreover, secrecy protocols

�
This work was funded by DARPA through AFRL contract F30602-98-C-0258 and by DARPA through

Rome Lab contract F30602-96-C-0291.

68

are modularized in the sense that there are separate verification conditions for each protocol
rule.

The secrecy theorem in [3] was based on Paulson’s trace model. Here we reformulate
this theorem to also work on a state-based model which is more compatible with the one
propagated by Mitchell et al. in [1]. We illustrate the encoding of specific protocols in this
model using the Otway-Rees protocol [4]. We do not, however, go into details of proofs,
since they are mostly straightforward adaptations of the ones stated in [3].

In order to formulate our results, we borrow the notion of ideals on strand spaces [6],
and we show how this concept is useful in a state model context for stating and proving
secrecy invariants. We show how the complement of an ideal, which we call a coideal,
serves as a catalyst to apply Paulson’s calculus-like set operators. Our protocol model is
also unusual in that message events are interspersed with “spell” events that generate the
short-term secrets in a session and specify which principals are supposed to share them.

Besides proving secrecy results of standard benchmark protocols like the Otway-Rees
and the Needham-Schroeder (public key) protocols, our methods have been applied suc-
cessfully1 in the process of verifying the group management services of Enclaves [2].

2 The Modeling Approach

Our modeling approach is fairly close to the MSR idea in [1], although the details of the
notation are different. A protocol is a rule for placing messages and updating local states
in a global set of current events. Encrypted message fields are represented symbolically by
terms indicating the key and plaintext field.

2.1 Fields

The modeling task begins by defining the primitive data types that may occur as message
fields: agents, keys, and nonces. (In another context we might use “principal” instead of
“agent.”) These sets are assumed to be disjoint, and they are all subtypes (subsets) of the
field type � . They are modeled as abstract datatypes in PVS.

An agent is either an ‘ordinary’ user, a dedicated server Srv, or the supposedly mali-
cious Spy. Each agent A has some long-term keys: a public key Pub(A), a corresponding
private key Prv(A), and a symmetric key Shr(A).

Message fields are divided into primitive and compound fields. The primitive fields con-
taining agents, nonces, and keys are constructed as Agent(A),Nonce(N), and Key(K).

1Private communication: B. Dutertre, SRI International.

69

(The PVS conversion mechanism is used to suppress these injections in the sequel.) Com-
pound fields are constructed by concatenation or encryption. The concatenation of X and
Y is the term X ++ Y. or encryption Encr(K, X). The encryption of X using the key K
is Encr(K,X), regardless of the type of key. The possible message fields are elements of
the datatype field.

Agents and compound fields are never designated as secret by policy, though some com-
pound fields may have to be protected to maintain the secrecy of some of their components.
Thus, we define basic fields as nonces and keys, which are the kinds of primitive fields
that may be designated as secret according to policy. The PVS definition of the member-
ship predicate basic? is shown below. PVS fragments are displayed in this paper within
boxes.

basic?: set[field] = union(Nonce?, Key?)

As a notational convention, variables A, B and variants always stand for agents; K and
variants always stand for keys; and N and variants are always nonces. X, Y and Z are
arbitrary fields.

Each key K has an inverse.

inv(K): key =
CASES K OF
Pub(A): Prv(A), Prv(A): Pub(A), Shr(A): Shr(A), Ssk(A): Ssk(A)

ENDCASES

Thus, both Shr(A) and Ssk(A) are symmetric. The special agent Server is as-
sumed to hold the symmetric (and thus, shared) key Shr(A) of any agent A.

2.2 Events

There are three kinds of events: messages, spells, and state events.

event: DATATYPE
BEGIN
Msg(Cont: field): Msg?
Cast(Secrets: set[(basic?)], Cabal: set[agent]): Spell?
State(Role: nat, Label: nat, Memory: field): State?

END event

Messages are essentially Paulson’s Says events, and the content of a message event is
a field. We do not need to refer to the sender and receiver of a message. A spell generates

70

certain session-specific primitive fields and designates them as secret. A spell is an event
Cast(S, C), where S is a set of short-term basic fields called the book, and C, the so-
called cabal, is a set of agents who are permitted to share the secrets in S.

As a notational convention, we use E (and variants) to denote events, while M is a
message and C is a spell.

A global state is simply a collection of events. Notationally, variants of H are global
states. We shall see later that states reachable by a protocol contain messages in transit and
local states of agents participating in the protocol.

global: TYPE = set[event]

We extend the notion of a content to global states in the natural way. Spells and state
events do not contribute to the content. Similarly, the secrets of a state are obtained as the
basic fields of the secrets of its cast events.

sees(H)(X): boolean = EXISTS (M: (Msg?)): member(M,H) & Cont(M) = X

secrets(H)(X): boolean = EXISTS (C: (Spell?)):
member(C,H) & basic?(X) & member(X,Secrets(C))

2.3 Inductive Relations

The fundamental operations on sets S of message fields, as introduced by Paulson, are
Parts(S), Analz(S), and Synth(S).

Briefly, Parts(S) is the set of all subfields of fields in the set S, including compo-
nents of concatenations and the plaintext of encryptions (but not the keys). Note that if
member(X, Parts(

�
Y �)), then X is a subterm of Y, in the sense of [6], written X <=

Y. The subterm relation is a partial order.

Analz(S) is the subset of Parts(S) consisting of only those subfields that are ac-
cessible to an attacker. These include components of concatenations, and the plaintext of
those encryptions where the inverse key is in Analz(S).

Analz(S)(X): INDUCTIVE bool =
S(X)

OR (EXISTS Y: Analz(S)(X ++ Y))
OR (EXISTS Y: Analz(S)(Y ++ X))
OR (EXISTS K: Analz(S)(Encr(K, X)) AND Analz(S)(inv(K)))

The intruder in our model synthesizes faked messages from analyzable parts of a set of
available fields. This motivates the definition of fake(S).

71

Fake(S): set[field] = Synth(Analz(S))

Fake_Parts: LEMMA Parts(Fake(S)) = union(Parts(S), Fake(S))

3 Ideals and Coideals

If the spy ever obtains some secret field X, it can transmit X as the content of a message.
Thus, our secrecy policy is that if the message with content X occurs in some trace, then
NOT member(X,S), where S is a set of basic secrets.

The invariant that we will actually prove is that NOT member(X, Ideal(S)),
where Ideal(S) is the ideal generated by S: the smallest set of fields that includes S
and which is closed under concatenation with any fields and under encryption with keys
whose inverses are not in S. ideal(S is the � -ideal �������	� from [6] where � is the set of
keys whose inverses are not in S.

With our choice of � , the ideal is defined as follows:

Ideal(S)(X): INDUCTIVE boolean =
S(X)

OR (EXISTS Y, Z: X = Y ++ Z & (Ideal(S)(Y) OR Ideal(S)(Z)))
OR (EXISTS Y, K: X = Encr(K, Y) & Ideal(S)(Y) & NOT S(inv(K)))

Under the assumption that any term not in the ideal may be already compromised, it
is necessary to protect this whole ideal, because compromising any element of the ideal
effectively compromises some element of S. It turns out that protecting this ideal is also
sufficient.

The complement of and ideal, which we call a coideal, is denoted by Coideal(S).
This defines the set of fields that are public with respect to the basic secrets S, i.e., fields
whose release would not compromise any secrets in S.

The property that makes the notion of “coideal” worth defining is that coideals are
closed under attacker analysis, thereby implying that protection of the ideal is sufficient.

Analz_Closure: LEMMA Analz(Coideal(S)) = Coideal(S)

Synth_Closure: LEMMA subset?(S,(basic?)) =>
Synth(Coideal(S)) = Coideal(S)

72

4 Protocols and Secrecy

A protocol specifies which messages or spells can be added to a global state. A secret in a
spell book must be unused in the prior state, in the sense that it is not a part of any message
content and it has not occurred as a secret in a prior spell.

unused(H: global)(X: field): boolean =
basic?(X) & NOT(Parts(sees(H))(X)) & NOT(secrets(H)(X))

A protocol rule is a triple consisting of a pre- and a post set of events and a set of nonces.
Intuitively, such a rule is applicable in some global state H if the pre events are a subset of
H and if the nonces in the rule are unused in H. A rule fires by deleting the pre events from
the state and adding the post events.

rule: TYPE =
[# Pre: set[event], Nonces: set[(basic?)], Post: set[event] #]

There are several local conditions on protocol rules. First, there is at most one spell in
the post, and a cast and a message event may not occur simultaneously in the post. Second,
all secrets of casts in the post must be subset of the rule nonces. Third, regularity states that
whenever a longterm key K is neither in the parts of the content or the memory of the pre
then it is also not in the parts of the content or the memory of the post.

single_spell(post: set[event]): boolean =
FORALL (C, C1: (Cast?), E: (Event?)):

(member(C, post) & member(C1, post) => C = C1)
& (member(C, post) & member(E, post) => NOT Msg?(E))

fresh(Ns: set[(basic?)], post: set[event]): boolean =
FORALL (C: (Cast?)): member(C,post) => subset?(Secrets(C),Ns)

regular(pre, tau1): boolean =
FORALL(K: longterm):

(NOT(Parts(sees(pre))(K)) & NOT(Parts(memory(pre))(K)))
=> (NOT(Parts(sees(post))(K)) & NOT(Parts(memory(post))(K)))

It is usually straightforward to check that rules of a specific protocol obey these condi-
tions. Usually, we (mis)use the PVS prover to automatically check these static conditions.

Rules that satisfies the conditions above are collected in the type protocol.

73

protrule(rl: rule): boolean =
single_spell(Post(rl))
& fresh(Nonces(rl),Post(rl))
& regular(Pre(rl),Post(rl))

protocol: TYPE = set[(protrule)]

A protocol P and a given set of initial knowledge I (of the spy), a global I-extension
is a binary relation of states. This relation determines a transition system. An extension is
either honest, i.e. it corresponds to a move by a player following the rules, or it is faked
by the spy. As usually, the spy is reduced to add only messages with a content that can be
inferred from the content of the current state and the initial knowledge.

honest(P: protocol)(H, H1): boolean =
EXISTS(rl: (P)): subset?(Nonces(rl), unused(H))
& subset?(Pre(rl), H)
& H1 = union(Post(rl), difference(H, Prestates(rl)))

fake(I: set[field])(H, H1): boolean =
EXISTS(X: (Fake(union(sees(H), I)))): H1 = add(Msg(X), H)

global_extension(P: protocol, I: set[field])(H, H1): boolean =
honest(P)(H, H1) OR fake(I)(H, H1)

We need some further concepts before stating our secrecy theorem. The basic secrets
associated with a spell include not only the elements of the spell book but also the long-term
secrets of the agents in the cabal.

ltk(C: (Cast?))(X: field): boolean =
Key?(X)

& longterm(Val(X))
& EXISTS(A: agent): Q(A)(Val(X)) & Cabal(C)(A)

basic_secrets(C)(X: field): boolean =
basic?(X) AND (Secrets(C)(X) OR ltk(C)(X))

A spell is compatible with an initial knowledge set that does not compromise its asso-
ciated basic secrets, or mention the short-term secrets in its book.

compatible(I: set[field])(C: (Cast?)): boolean =
disjoint?(basic_secrets(C), Parts(I))

The set of reachable states H is defined in the usual way using a least fixed-point defini-
tion.

74

reachable(P, I)(H): INDUCTIVE boolean =
empty?(H) OR (EXISTS (G: global): reachable(P, I)(G)
& global_extension(P, I)(G, H))

A protocol is secure with respect to its secrecy policy and the spy’s initial knowledge
I if every reachable state it generates is secret-secure. This property, for traces, was called
“discreet” in [3].

secret_secure(I: set[field])(H: global): boolean =
FORALL C: compatible(I)(C) & H(C)

=> subset?(sees(H), Coideal(basic_secrets(C)))

The secrecy proof for a protocol has a protocol-independent part and a protocol-
dependent part. The protocol-dependent part is expressed by the occultness property de-
fined below. It says that if the prior state is secret-secure, the next message event generated
by the protocol does not compromise a secret. This has to be proved individually for each
protocol. This protocol property was called “discreet” in [3].

occult(P: protocol): boolean =
FORALL (I: set[field], H: global, C: (Cast?), rp: (protrule)):

reachable(P, I)(H)
& secret_secure(I)(H)
& compatible(I)(C)
& H(C)
& subset?(Pre(rp), H)
& P(rp)
=> subset?(sees(Post(rp)),Coideal(basic_secrets(C)))

The protocol-independent part of a secrecy proof is the Secrecy theorem. It only has to
be proved once.

secrecy: THEOREM
occult(P) => subset?(reachable(P, I), secret_secure(I))

The proof of this theorem is along the lines of the proof in [3] for proving a secrecy
theorem for trace models, but now the induction is on the length of protocol extensions (see
Definition of reachability).

Notice that these are strictly secrecy results, and show only that the secrets generated in
a particular run of the protocol are not compromised. Most authors of protocol proofs have
noted that the security objectives of a protocol may be undermined in other ways than by
compromising secrets, usually due to some failure of authentication. Possible combinations
of secrecy and authentication are discussed in [3].

75

5 Example: The Otway-Rees Protocol

The goal of the Otway-Rees protocol is to mutually authenticate an initiator and responder
and to distribute a session key generated by the server. One session consists of the four
messages in Figure 1. We prove that none of the secrets ��� , ��� , or � are disclosed.

���
	�� ������ ��� � � �
�
��������� � � ��������� !

���#"$� �%�'& �)(� ��� � � �
�
� � ����� � � � ������� * � �

���+���,� � � � ������� �-
���#.$� & �)(����� ���

�
���/��� � �����0� * � �

���+��� � �����0� �-
����1 � �%��2� ���

�
�3����� � ������� !

Figure 1: The Otway-Rees Protocol

The informal rules in Figure 1 are easily, albeit somewhat tediously, encoded in the trace
model. Here we only state a selection of the formalization of the Otway-Rees protocol rules.

The spell rule spl1 generates the nonce Na as needed for the first protocol step. Note
that the server need not be mentioned in the cabal.

spl1(A, B: agent, Na: nonce): (protrule) =
(# Pre := emptyset,

Nonces := singleton(Na),
Post := singleton(Cast(add(Na,emptyset),

add(A, add(B, emptyset))))
#)

The type constraint (protrule) causes the PVS type checker to generate verifica-
tion conditions corresponding to the conditions on protocol rules. These and all the other
verification conditions are easily discharged using the PVS prover.

Sending and receiving is split into two parts. The first step in the Otway-Rees protocol,
for example, is transcribed as follows.

76

snd1(A, B: agent, N, Na: nonce): (protrule) =
(# Pre := add(State(roleA, 0, A ++ B ++ Srv),

add(Cast(add(Na, emptyset),
add(A, add(B, emptyset))), emptyset)),

Nonces := add(N, emptyset),
Post := add(State(roleA, 1, A ++ B ++ Srv ++ Na),

add(Msg(N ++ A ++ B ++ Encr(Shr(A),
Na ++ N ++ A ++ B)), emptyset))

#)

rcv1(A, B: agent, N, Na: nonce): (protrule) =
(# Pre := add(State(roleB, 0, B ++ Srv),

singleton(Msg(N ++ A ++ B
++ Encr(Shr(A), Na ++ N ++ A ++ B)))),

Nonces := emptyset,
Post := singleton(State(roleB, 1, B ++ Srv ++ N ++ A))

#)

Rules that introduce nonces (to be kept secret) take them from a prior spell with the
expected cabal. When an agent uses a secret from a spell book, the agent does not see any
of the other secrets in the same spellbook, though it might know about them from prior
messages.

In general, a sequence of states generated by these rules interleaves the behavior of as
many agents as we wish, and any number of concurrent or sequential sessions of the same
agents. Altogether, the Otway-Rees protocol is formalized as follows.

otway_rees: protocol =�
r: (protrule) |

EXISTS A, B, N, Na, Nb, K:
r = init(A, B)

OR r = spl1(A, B, Na)
OR r = snd1(A, B, N, Na)
OR r = rcv1(A, B, N, Na)
OR ... �

The secrecy theorem states that it suffices to show occult(otway rees). In a
first step, using skolemization and split rules in order to show occultness for reach rule
separately. For the lemma below occultness follows trivially for most protocol rules.

sufficient_for_occultness: LEMMA
disjoint?(Msg?, Post(rp)) => occult(singleton(rp))

It remains to prove occultness for four rules in the Otway-Rees protocol. In the case of
the snd1 rule, for example one has to prove.

77

�
-1 � subset?(sees(H), Coideal(basic_secrets(C)))�
-2 � reachable(OR, I)(H)�
-3 � H(C)�
-4 � H(State(roleA, 0, A ++ B ++ Srv))�
-5 � H(Cast(add(Nonce(Na), emptyset), add(A, add(B, emptyset))))
|----------�
1 � Coideal(basic_secrets(C))

(N ++ A ++ B ++ Encr(Shr(A), Na ++ N ++ A ++ B))

Currently, we still prove these kinds of verification conditions in an interactive way
(typically around 20-40 interactions per rule), but the repetitive patterns in these proofs
suggest higher-level proof strategies.

6 Conclusions

Our secrecy theorem separates protocol-dependent and protocol-independent aspects of se-
crecy proofs. The protocol-dependent part is to show the occultness property, which only
asks whether honest messages compromise secrets, given strong assumptions about the
preservation of secrecy in the prior message history.

The secrets to be protected are defined in an explicit, uniform way by introducing
“spell” events into the protocol. Spell events generate the short-term secrets for a particular
“cabal”, the set of agents sharing the new secrets. Secrets are shown to be protected even
when the long-term secrets of other agents, or the short-term secrets in other protocol runs
(with other spells) are compromised.

The closure results on the coideal have turned out to be a useful addition to the arsenal
of proof techniques, enabling interesting examples to be shown secure. Protocol proofs are
still complex enough so that we feel proof-checking and automation to be valuable for the
sake of assurance, and we believe that the same techniques that simplify manual proofs will
also be helpful in organizing machine-assisted proofs.

Currently, we are developing high-level PVS strategies for automatically discharging
most verification conditions for typical protocol rules. In these strategies we try to capture
the repetitive patterns that have been showing up in hand and mechanized interactive proofs.
It is our hope that, using these strategies, we can prove secrecy results about realistic pro-
tocols in a ”fairly” automatic way. Also, we have developed a translator from the CAPSL
protocol specification language to a corresponding PVS protocol model. In this way, PVS
is used as a backend for cryptographic protocol analysis.

78

References

[1] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-notation for
protocol analysis. In 12th IEEE Computer Security Foundations Workshop, pages 55–
69. IEEE Computer Society, 1999.

[2] L. Gong. Enclaves: Enabling Secure Collaboration over the Internet. IEEE Journal of
Selected Areas in Communications, 15(3):567–575, April 1997.

[3] J. Millen and H. Rueß. Protocol-independent secrecy. In 2000 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2000.

[4] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating
System Review, 21(1):8–10, 1987.

[5] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions on
Software Engineering, 21(2):107–125, February 1995.

[6] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In 11th
IEEE Computer Security Foundations Workshop, pages 66–78. IEEE Computer So-
ciety, 1998.

79

Proving Secrecy Is Easy Enough
�

Presented at CSFW 2001

Véronique Cortier
Laboratoire Spécification et Vérification

Ecole Normale Supérieure de Cachan
61, Avenue du Président Wilson, 94230 Cachan, France

cortier@lsv.ens-cachan.fr

Jon Millen and Harald Rueß
SRI International, Computer Science Laboratory

333 Ravenswood Ave, Menlo Park, CA 94035, USA�
millen,ruess � @csl.sri.com

September 25, 2002

Abstract

We develop a systematic proof procedure for establishing secrecy results
for cryptographic protocols. Part of the procedure is to reduce messages to
simplified constituents, and its core is a search procedure for establishing se-
crecy results. This procedure is sound but incomplete in that it may fail to es-
tablish secrecy for some secure protocols. However, it is amenable to mech-
anization, and it also has a convenient visual representation. We demonstrate
the utility of our procedure with secrecy proofs for standard benchmarks such
as the Yahalom protocol.

1 Introduction

Cryptographic protocols are used to achieve goals like authentication and key dis-
tribution in a possibly hostile environment. These protocols are notoriously dif-
ficult to design and test, and serious flaws have been found in many protocols.
Consequently there has been a growing interest in applying formal methods for
validating cryptographic protocols. In particular, standard program verification

�
This work was funded by DARPA through the Air Force Research Laboratory Contract F30602-

98-C-0258 and by DARPA through Rome Lab contract F30602-96-C-0291.

80

techniques such as model checking, theorem proving, or invariant generation have
been found to be essential tools; a recent overview has been given by Meadows [9].

A popular choice is to use model checking procedures for debugging purposes
by searching for attacks. These techniques, however, are not directly applicable
for verification, since search spaces usually can not be explored exhaustively. In
contrast, approaches based on theorem proving techniques aim at mathematical
proofs of the desired protocol properties [3, 6, 15, 17]. We review the techniques
that are most closely related to our work. Paulson [15] uses an interactive theorem
prover to prove invariance properties by proving that they are inductive, i.e. they
are preserved by the execution of each and every protocol rule. Domain-specific
tactics are crucial for mechanizing the process of proof construction, but verifica-
tions still require considerable effort and insight into the workings of the protocol
under consideration. Cohen’s [3] approach is much more automatic. He constructs
a first-order invariant from a protocol description, and uses first-order reasoning for
establishing safety properties. Cohen’s approach is amenable to both hand proofs
and automation. Indeed, he applies his method to verify the large majority of the
benchmark protocols in the Clark and Jacob survey [2] with only a small amount
of user intervention.

In contrast to the work by Paulson and Cohen we do not consider safety prop-
erties in general, but we restrict ourselves to the specific case of proving secrecy
invariants of cryptographic protocols; that is, our main interest is in proving that
secrets are not accidentally revealed to unauthorized agents. Proving secrecy in-
variants for cryptographic protocols has often been found to be the hardest task
in analyzing a protocol [15]. Indeed, secrecy has been shown to be undecidable
even under very weak assumptions on the protocol [4], while specialized logics for
establishing authentication are usually decidable [11].

Our proof technique is to perform inductive proofs, as advocated by Paul-
son [15]. To help express secrecy goals, we make use of the “spell” events intro-
duced in [10]. However, this paper does not use the trace model as in [10] or [15],
but a new state-transition model similar to the MSR model proposed by Mitchell
el al [1]. We have found that the Secrecy Theorem in [10] could be adapted to
work just as well in this context. The current model and our use of PVS to perform
inductive proofs with this model were presented at a workshop that did not have
a published proceedings [16]. We have used this approach mainly for proving se-
crecy of standard benchmark protocols such as the Otway-Rees and the Needham-
Schroeder protocol. Dutertre et al [5] used our techniques for verifying the group
management services of Enclaves [7].

The starting point for this paper is the observation that secrecy proofs based
on the decomposition of the Secrecy Theorem follow a standard pattern that is
amenable to mechanization, and which also has a convenient visual representa-

81

tion. Part of the procedure is to reduce messages to simplified constituents called
branches. The core is a search procedure for establishing secrecy results. This
procedure is sound but incomplete in that it may fail to establish secrecy for some
secure protocols.

The paper is structured as follows. In Section 2 we review a state-based model
for modeling cryptographic protocols, and we state a suitable security policy to-
gether with a corresponding secrecy theorem as introduced in [16]. This theorem
reduces secrecy proofs to local proof obligations on protocol transitions; these obli-
gations are called occultness conditions. In Section 3 we develop a characterization
of the occultness notion, which is used to initialize our proof procedure. Then, in
Section 4 we describe a search procedure for establishing secrecy results. More-
over, Section 4 contains a soundness result for this search procedure, and we sketch
a convenient graphical representation for occultness proofs. Section 5 includes
some case studies drawn from the Clark-Jacob survey [2] such as the Yahalom and
the Kao Chow repeated authentification protocol. We also demonstrate a proof of
non-occultness from a failed proof attempt. Section 6 contains some concluding
remarks.

2 Background

We give an overview of state-based encodings of protocols, a security policy based
on the notion of coideals, and a secrecy theorem for generating local verification
conditions. More detailed descriptions can be found in [10, 16].

Message Fields. The set ���������
	 of message fields is made up of primitive and
compound fields. The primitive fields are those of types �������� , ����� , and ���
����� .
Keys and nonces form the set ����	 �!� ; these basic fields are the only types of fields
that may be designated as secret, as a protocol policy goal. Compound fields are
constructed by concatenation ["$#&%] (often written without brackets) or encryption' ")(+* .

As a notational convention, variables , , - and variants always stand for agents;.
and variants always stand for keys; and / and variants are always nonces. The

reserved subscript “s” identifies a set, so /10 is a set of nonces.
Each agent , has some long-term keys: a public key 2�35476!,98 , a corresponding

private key 2
:<;=6!,98 , and a symmetric key >�?5:@6!,98 , which is shared between , and
a designated server agent ACB D . Each key

.
has an inverse key

.FEHG
; in particular,

25354I6!,J8 EHGLK 2
:<;�6!,98 , 2
:<;�6!,J8 EHG�K 2�354I6!,J8 , while >�?�:@6!,98 EHGLK >�?�:@6!,98 , as is the
case with any symmetric keys. Keys generated during a protocol session are always
symmetric keys.

82

Events and Global States. There are three kinds of events: message, spell, and
state events. A message event is simply a field representing the content of the mes-
sage. A spell event � K�������� A
	C��� � 	 , generates the book, or session-specific
set of basic secrets ��� ��� 6��8 K��

, which are shared among the set � ��� �
�&6��8 K��
of agents, the cabal.

A state event is of the form � K
A � 6 " 8 � A�� � � � 	 where A is a role name, �

is a natural number that represents the step of the protocol, and " K�� ���$6��8 is
a concatenated field that represents the memory held by the state. We also write� ��� 6�� 8 K ' � ���$6��8���� � � � A�� � � � 	 (for any event set � . As a notational
convention, we use � (and variants) to denote state events, while ! is a message
event, and � is a spell event. The set of basic secrets of a spell consists of its book
plus the long-term keys of its cabal:

A �&�56� 8 K ��� ��� 6��8#" � �$�H6�� ���&�
�&6� 8 8
The long-term keys are those generated by 253�476&% 8 , 2
:<;�6&% 8 , and >�?5:@6&% 8 .

A global state is a set (not a multiset) of events. Notationally, variants of �
are global states or event sets. The content of a global state is its set of messages,
written:

� �
��� 6�� 8 defK �'� ����������	
Similarly, the secrets of a global state are obtained from its spell events.

A��&��6�� 8 defK)(' A��&��6��8*��� � �)(
A basic field " is unused in � if it is neither a part of a field in the content nor a
secret of � .

+ � + 	�� � 6�� 8 defK ' " � ����	����,�
".-� 2�/
:10@> 6�� �
��� 6�� 8 8 , "2-� A��&��6�� 8 (

Inductive Relations. 2
/
:10@> 6 � 8 is the set of all subfields of fields in the set of
fields

�
, including components of concatenations and the plaintext of encryptions

(but not the keys). /43
/�5 6 6 � 8 is the subset of 2
/
:10@> 6 � 8 consisting of only those
subfields that are accessible to an attacker. These include components of concate-
nations, and the plaintext of those encryptions where the inverse key is in /�3
/45 6 6 � 8 .
More precisely, /43�/45 6�6 � 8 is the smallest superset of

�
such that " � /43
/�5 6�6 � 8 and

% � /43�/45 6 6 � 8 if 7 " #&%98 � /43�/45 6
6 � 8 , and " � /43�/45 6 6 � 8 if
' ")(* � /43�/45 6 6 � 8 and. EHG:� /43
/�5 6 6 � 8 . Finally, ><;43=0 ?76 � 8 is the set of fields constructible from

�
by con-

catenation and encryption using fields and keys in
�

. It is defined to be the smallest
superset of

�
such that 7 " #&%98 � ><;>3=0 ?�6 � 8 if " � ><;43=0 ?76 � 8 and % � ><;>3=0 ?76 � 8 ,

83

� ������� �	�
� ����� ���� ���
���������������! "#��$%�'&()�
A *�+ $%��&,��-/.�0213�
B * + &4��-5.�0213�
Srv * + -/.6021

7 ��8��9 (0)

: �;���<� =">�;$%��&?
A *;+ $��'&,�@-/.6021 A ���=���� :

A B6+ $���&,�@-/.60C�����D13�E �F��$��3�����<���F�'&(
GIHKJMLONQPSRTA (1)�� � E �F��$��'UFRV�
B *�+ &,�@-/.�0213��;�%��� ">�;$%��&?

7 8
9 W��� (2):

B B�+ &,��-/.60C�'$%�����313�E �F�@&4�'$%�XUY�Z�;� � ���F�'$� GIHVJMLI[P R A�� �]\ �
Srv *�+ -/.�0213����Y� ">�;$%��&?

7 8
9 W��� (3):

Srv B�+ -/.�0213�E �F�Z��� � �'�! GIHVJSL^N	P �3��� � ���! GIHVJMLI[P R A
where \ def_ E �F��&,��$��3�����<���F�'&(GIHKJMLONQP �3���������F�@$� GIHKJ`LO[�P R

Figure 1: Encoding of part of Otway-Rees protocol.

and
' ")(+* � ><;43 0�?I6 � 8 if " � ><;>3=0 ?�6 � 8 and

. � ><;43 0�?76 � 8 . The intruder in our
model synthesizes faked messages from analyzable parts of a set of available fields.
This motivates the definition a /	b�c�6 � 8 defK ><;>3=0 ?76 /43�/45 6 6 � 8 8 .

Ideals and Coideals. An ideal d�6 � 8 denotes the set of fields that have to be
protected in order not to reveal any secrets in

�
[18]. It is defined as the smallest

superset of
�

such that 7 " #&%98 � dJ6 � 8 if " � d�6 � 8 or % � d�6 � 8 , and
' ")(* �d�6 � 8 if " � d�6 � 8 and

. EHG -� dJ6 � 8 . The complement of an ideal, the coideal,
is denoted by e 6 � 8 . This defines the set of fields that are public with respect to
the basic secrets

�
, i.e., fields whose release would not compromise any secrets

in
�

. Coideals are interesting because they are closed under attacker analysis; i.e.a /	b�c56Ke 6 � 8&8 K e 6 � 8 for all primitive fields
�

.

Protocols. A protocol transition f is of the form g B&�76hf 8 � �Di�6hf&8j>k g ��	�� 6hf 8 , whereg B&��6hf&8 and g ��	 ��6hf&8 are set of events and � �Di�6hf&8 is a set of nonces. Such transitions
specify a possible global state change in a way to be explained below.

Except for an initialization transition, a transition f shows a state change for
one role. It may also produce, in the post, a message or a spell but not both.

84

A primitive field occurring in post messages or state memory must occur in the
messages or state memory of the pre or among the nonces. This condition is called
regularity, and it implies that no long-term keys are deliberately introduced into
a post message. There is also a restriction that secrets in a post spell are all in
� � i�6hf 8 . (The freshness of nonces in � �Di 6hf&8 resides in reachability.)

A protocol is simply a set of protocol transitions. A protocol specification is a
set of rules, where each rule is a schema defining a set of transitions using terms
with free variables. More formally, a transition f is an instance of a rule B � iff there
exists a ground substitution � , defined on the variables of B � , such that f K � 6@B ��8 .

Protocol rules for the first three messages of the familiar Otway-Rees [13] (OR)
and Needham-Schroeder-Lowe [8,12] (NSL) public key protocols can be found in
Figures 1 and 2, respectively. Often, as in the Needham-Schroeder specification,
we omit the state events for brevity when they are not needed for our purposes.

In both protocols, each session is initiated with a spell to introduce the session-
specific secrets and a corresponding cabal. In addition, the Otway-Rees protocol
introduces a non-secret nonce / in rule 1.

Global State Transitions. Given a protocol
�

and a set of initial knowledge �
(of the spy), the global succession relation transforms a state � to a new state ��� .
A succession is either honest, i.e. it corresponds to an action by an agent following
the protocol, or it is faked by the spy.

� ��� is an honest successor of � , denoted by �7�
����	 � 6 � 8�6��$# �	� 8 , if there ex-
ists an applicable transition f in

�
such that � � K 6���
I6�g B �I6hf&8 � A�� � � � 	�8 8 "g ��	 ��6hf&8 .

� � � is a fake successor of � , denoted by ����� �76�I8�6�� # � � 8 , if there exists a
field " � a/	b�c 6�� �
��� 6�� 8 "��I8 such that ��� K �'" ' ")(.

In the honest case, a transition f is applicable in � if g B&��6hf&8�� � and � �Di 6hf 8��+ � + 	 �&� 6�� 8 . In the fake case, the spy is restricted to adding only messages that can
be inferred from the content of the current state and the initial knowledge. In either
case, we write � ����� �
�&6 � 8�6�78�6��$# � � 8 . This relation determines a logical transition
system with the empty set of events as its initial state. The set of reachable states
of this transition system is denoted by B&�&�5���7�����<�C6 � #��78 .

Because protocol spell books introduce only unused secrets, it is easy to show
that the spell books of different spells are disjoint.

Lemma 1 (Disjoint Book) If �J# � � � � � B � � ���7�4��� �=6 � #��78 then either � K � �
or ��� ��� 6��8 and ��� �
�H6��� 8 are disjoint.

85

Secrecy Policy. A spell is compatible with an initial knowledge set � that does
not mention its associated basic secrets.

� � �:	=� �!� ���<�C6�78 defK ' � � A�� �56��8 �$2�/
:10@> 6�78 K�� (
Given the spy’s initial knowledge � , a global state � is called � -discreet if

� �
��� 6�� 8 � e 6@A �&�76��8 8 for all � -compatible spells � � � ; these states are col-
lected in the set �
� 	���B&� � � 6�78 . Now, a protocol

�
is called discreet if �
� 	�� B ����� 6�78 is

an invariant of the transition relation associated with
�

; i.e. for all � , B&�&�5���7�����<�C6 � #��78
is a subset of � � 	���B&� ��� 6�I8 .

Secrecy Theorem. As in [10], the Secrecy Theorem serves to split the secrecy
proof for a protocol into a protocol-independent part and a protocol-dependent part.
The protocol-dependent part is expressed by the occultness property. It says that
if the prior state is discreet, the next message event generated by the protocol does
not compromise a secret.

Some more notation needs to be introduced before defining occultness. A
�

-
configuration is a tuple 6�C# �$# ��8 such that � � B&�&� � �7�����<�I6 � #��I8 , � � �
� 	�� B ������6�78 ,
� � � � �:	=� �!� ���<�C6�78 , and � � � . Now, a protocol

�
is said to be occult if for all�

-configurations 6�C# �$# ��8 and for each applicable transition f in
�

,

� �
��� 6�g ��	 ��6hf&8&8 � e 6@A��&�76��8 8 .
The protocol-independent part of a secrecy proof is the Secrecy Theorem.

Theorem 1 (Secrecy Theorem) A protocol
�

is discreet iff it is occult.

This theorem reduces secrecy proofs to proving occultness of individual rules of
the protocol. In the case of the Otway-Rees protocol in Figure 1, for example, we
are reduced to showing occultness of the rules (1),(2),(3), since occultness holds
trivially for rule (0). (The fourth rule is also easy to handle.) For rule 1 of the
Otway-Rees protocol we have to prove that for all reachable and � -discreet global
states � , and for all � -compatible spells � � � it follows from the applicability
conditions

� ' /�� # (� ' , #&- (� � ,

� A G 6!, #&- #�A����I8 � � , and

� / � + � + 	�� � 6�� 8

86

� ��� � � � � ���� �6�����<�����Z =">�;$%��&? D
(0)���;���<� =">�;$%��&? D W��� � E �;���<��$� �� ��� LO[�PVR (1): ������� ="#��$���&(�E �;� � ��$� � ��� LO[�P R A W��� � E �;� � ��� � �'&(� ��� LONQP R (2)� E �;���<�����;�'&(�� ��� LONQPSR W��� � E �;���� �� ��� LI[PVR (3)

Figure 2: Encoding of Needham-Schroeder-Lowe protocol.

that 7 /$#&, # ' /��5#&/$#&- (��	��
����� 8 � e 6@A��&�76��8 8 . To establish this, we have to check
two cases, depending on whether � is the spell in the rule or not. If it is, we note
that >�?5: 6!,J8 is in the coideal; in the other case, there is no secret to protect, because
the Disjoint Book Lemma implies that / � is not in ��� ���H6��8 . This case split
argument is one of the tasks that are simplified away using the search procedure
we will present.

It is undecidable whether or not a given protocol
�

is occult. Undecidability of
protocol security is well known, and has been proved in several different models.
See, for example, [4] and its references. A proof for this particular model works
by a simple encoding of the reachability problem of Turing machines such that the
encoded Turing machine reaches its final state iff the protocol is not occult.

Let � be a Turing Machine, � the set of states, (��� is the initial state and ���
is the final state), � the Tape Alphabet, (� is the blank symbol), its transitions are
on the form � G��CG k ��� � ��#&/ , where � G #���� � � , ��G # � � � � and � � ' � #�� # � (.
The interpretation is : if the machine � is in state � G and its head points ��G then �
changes to state ��� , replaces � G with � � and moves the head right (if / K �), left
(if / K��

) or stays at the current cell (if / K��
).

We do a copy � � of the Tape Alphabet : a primed letter represents the letter
pointed by the head of the Turing machine. We associate a number � � � � to each
� � � , � � � � � , a number � � � � to each � � � .

We encode the letters � � � "!��� and the states � � � as following :

� K /$##"#"#" #&/$ %'& (
� � times

#&, # � K /$##"#"#" #&/$ %#& (
�*) times

#&,

(Actually, the letters and the states are encoded by a specific length of nonces and
are separated by the name of an agent ,)

87

We encode the transitions � G � G k � � � � #�� by the rules:�
7 ' . # � G # "�# � � G # � #&%�(�	��
�� � 8����j#k�� 7 ' . # ����# " # � �!# � � #&% (� ��
�� � 8 �

for all � � ��
7 ' . # � G # " # � � G (�� ��
�� ��8	� �j#k � 7 ' . # ���
"$# � � # � � (�� ��
�� ��8 �

In addition, we have to consider the same rules where respectively " , " and
% , and % are omitted.

>�?5: 6!,J8 is a private key shared between the server and , but it could be any
shared key between 2 agents.

The initialization rule is

�
 *�� ��j#k � . � ,�#=7 ' . # ��� # � � (�� ��
�� ��8 �
and the “final” rule is

� 7 ' . # �*�=# ")(� ��
 ���� 8�� �j#k ' 7 . 8�(
The final state of the Turing machine is reachable iff this protocol is not occult.

Using theorem 1 it follows that it is also undecidable whether or not a given
protocol is discreet.

3 Branches

Occultness proofs work by contradiction. In proving occultness of rule 1 of the
Otway-Rees protocol in Figure 1, for example, one tries to obtain a contradiction
from the assumption 7 / #&, # ' / ��#&/ #&- (� ��
 ���� 8 � d�6@A�� �56� 8 8 . Using the definition
of ideals we are reduced to show that each of the cases / � d�6@A�� �56� 8 8 , , �d�6@A�� �56��8 8 , and

' /��5#&/ #&- (�	��
 � � � dJ6@A��&��6��8 8 yields a contradiction. The sec-
ond case yields an immediate contradiction, since agents names are not elements of
ideals. Furthermore, using the definition of ideals, the third case can be simplified
further to the disjunction >�?5:@6!,98��� dJ6@A��&��6��8 8 or 7 / � #&/$#&-98 � dJ6@A��&��6��8 8 . In
general, a field ! is in the coideal generated by A �&�76��8 iff for each nonce or key
- in 2�/
:10@> 6 ! 8 , either - is not in A �&�56� 8 or - is encrypted with at least one key
in A�� �56� 8 .

This observation suggests that, instead of examining ! itself, we examine
the basic secrets occurring in it and the keys protecting them. A branch is a pair
consisting of a basic field and a set of keys. The following recursion computes the
branches occurring in a field ! .

88

Definition 1 443��
?76 ! 8 is defined as 4�3��
?76 ! # � 8 , where

4�3��
?76!/$# . 0�8 K ' 6!/$# . 0�8 (
4�3��
?I6 . # . 0 8 K ' 6 . # . 0 8 (
4�3��
?=6!, # . 0�8 K �

4�3��
?I6 7�! G # ! � 8 # . 0�8 K 4�3��
?76 ! G # . 0�8#"
443��
?I6 ! �
. 0�8

4�3��
?I6 ' ! (+* # . 0�8 K 4�3��
?76 ! # . 0 " ' . (�8
Thus,

443��
?=6 7 / #&, # ' / ��#&/$#&- (�� ��
 �����8!8 K
' 6!/$# � 8�# 6!/ �5# ' >�?5: 6!,J8 (�8�# 6!/$# ' >�?5:&6!,J8 (�8 (%

It turns out that field ! is in e 6 � 8 if and only if its branches satisfy a simple
condition. The proof of is by induction on the operator depth of ! .

Proposition 1 Let
�

be a set of basic fields; then:

! � e 6 � 8 iff for all 6!%# . 0 8 � 443��
?76 ! 8 :
% � ��� . EHG0 � � -K �

.

Definition 2 For a protocol
�

, a branch � K 6!%�# . 0 8 , ��0 a set of events, and
/ 0 a set of nonces, the predicate � ����6 � # ��8�6�� 0 #&/ 0 8 is defined to hold iff for all�

-configurations 6�C# �$# ��8 such that

1. � 0 � � ,

2. / 0 � + � + 	 �&� 6�� 8 , and

3. % � A��&��6��8
it is the case that

. EHG0 � A��&��6��8 -K �
. For a transition f we write � ����6 � # ��8�6hf&8

instead of � � �76 � # ��8�6�g B&�I6hf 8 #�� �Di�6hf&8&8 .
The following characterization of protocol occultness is a straightforward conse-
quence of Proposition 1.

Proposition 2 A protocol
�

is occult iff

1. for all transitions f � � ,

2. for all message fields ! such that 7�!�8 � g ��	�� 6hf 8 , and

3. for all branches � � 4�3��
?I6 ! 8
the predicate � � �76 � # ��8�6�g B&�I6hf 8�#�� � i�6hf 8 8 holds.

89

4 A Search Procedure for Establishing Occultness

Now, we describe a search procedure for establishing � ����6 � # ��8�6hf&8 for a given
branch � and a transition f . This algorithm proceeds by applying some basic
tests which are sufficient for establishing that the occultness predicate above holds.
Whenever these tests fail, a back step is performed. Such a step explores every pos-
sibility of how certain message fields could have been published on the network.

Lemma 2 (Basic Tests) Let � K 6�� # . 0 8 be a branch, � 0 a set of events, and / 0
a set of nonces; then: � � �76 � # ��8�6��J0 #&/ 0 8 holds if one of the following is true.

1. � � / 0
2. There exists a

. �0 such that
. �0 � . 0 and 6�� # . �0 8 � 4�3��
?I6�� �
� ��6���0 8 8 ; in

this case we write 6�� # . 0�8 � � 443��
?I6�� �
��� 6�� 0 8&8 .
3. There exists a spell � � �90 such that � � ��� ��� 6��8 and

. EHG0 � A��&�56��8 -K�� ;
in this case we write �4�56��J0 #�� # . 0 8 .

Note that we employ the obvious extension of 4�3��
?I6&% 8 to sets of fields. The operator� �
says that a branch may have more keys than necessary, which is not harmful,

since one good key is enough.
Given a

�
-configuration 6��# � # � 8 such that the requirements listed in Defini-

tion 2 hold, Lemma 2 is proved as follows. First, consider the basic test � � / 0 .
Since / 0 � + � + 	�� � 6�� 8 , it follows that � �� A��&�76��8 . Thus, � � �76 � # ��8�6��90 #&/ 0�8
holds. Second, assume 6�� # . 0�8 � � 443��
?76�� � ��� 6�� 0 8 8 and let

. �0 � . 0 be such that
6�� # . �0 8 � 4�3��
?76�� �
��� 6���0 8 8 . Since ��0 � � and � is � - � � 	���B&� ��� , it follows that
� �
��� 6�� 0 8 � e 6@A��&�76��8 8 . Consequently, using Lemma 1,

. �0 EHG � A�� �56��8 -K �
,

and thus
. 0 EHG � A�� �56��8 -K �

. The third part of Lemma 2 is a consequence of the
disjoint book lemma (Lemma 1).

Consider, for example, rule 2 of the Otway-Rees protocol in Figure 1. This
rule, denoted by � ��� , contains a message variable " in its pre. Thus, � ��� denotes
an infinite set of transitions, and a uniform proof of the occultness of this family of
transitions starts by introducing a symbolic constant " � .

6!/$# � 8�# 6!/ # ' >�?�: 6!-L8 (�8 � �
443��
?I6�� �
��� 6 ' 7 /$#&,�# "�� 8 # ' /���# (� ' ,�#&- ((�8 8 ,

it follows that both � � �76
	 � # 6!/$# � 8 8�6 � ���78 and � � �76
	 � # 6!/$# ' >�?5:&6!-L8 (�8 8�6 � ���58 hold.
Furthermore, since the predicate ����6 ' 7 /$#&,�# "	� 8 # ' /���# (� ' , #&- (5(#&/���# ' >�?�: 6!-L8 (�8
holds, it follows that � ����6
	 � # 6!/���# ' >�?5: 6!-L8 (�8 8�6 � ����8 holds, too.

90

The occultness proof of the Otway-Rees protocol uses only basic tests. In
general, however, other rules have to be taken into consideration. Consider, for
example, the case 6!/ �5# ' 2�354I6!,J8 (�8 � 4�3��
?I6 ' / �5#&/���#&- (������ ���� 8 for proving rule 2
of the Needham-Schroeder-Lowe protocol in Figure 2; this rule is denoted by ��� � � .
None of the basic tests above establishes that � ����6 � � � # 6!/ ��# ' 253�476!,98 (�8 8�6@��� � �78
holds. The purpose of a back step is to obtain additional information for applying
the basic tests. For each message event ! in ��0 , two possibilities have to be taken
into consideration: either ! has been published by an honest agent following the
protocol rules or ! was injected by the intruder.

Definition 3 (Search) Let
�

be a protocol, f be a transition of
�

, and � be a
branch of the form 6�� # . 0 8 ; then:

�L�
� � 6 � # ��8�6hf&8 defK � � � �Di�6hf&8
	
	�� �
B � � 6 � # ��8�6�g B&�=6hf 8 8

	�� �
B ��� 6 � # ��8�6�� 0�8 defK � � � 443��
?I6�� �
��� 6�� 0 8&8�	
�4�56���0�#�� # . 0�8�	 �&�5��� 6 � # ��8�6���0 8

� � ��� 6 � # ��8�6�� 0�8 defK 6� ! � ��0�� � � 2�/
: 0 > 6 ! 8 8
6 �7�
����	 ��6 � # ��8�6 ! 8�� ����� �76 � # ��8�6 ! 8 8

�7�
����	 � 6 � # ��8�6 ! 8 defK 6��>f � � � # ! � 2�/
: 0 > 6 � �
� � 6 g ��	���6hf � 8&8 8 8
	�� �
B � � 6 � # ��8�6�g B&�=6hf � 8&8

����� ��6 � # ��8�6 ! 8 defK 6�� ! G # %�%�% # ! ��� 7�! G # %�%�% # ! ��8 K ! 8
	����&6�� � 2
/
:10@> 6 !�� 8��$	 �&�
B ��� 6 � # ��8�6 ' !�� (�8&8

These predicates determine a search procedure in the usual way. For example,� G 	 � � is computed non-deterministically: if the computation of
� G (or

� �) ter-
minates with �!B + � , then the computation of

� G 	 � � terminates with �!B + � . Using
these conventions, Definition 3 gives rise to a nondeterministic proof procedure for
establishing occultness.

Now we outline the proof of soundness for our procedure. The proof of the
main lemma applies induction on the number of back steps in deducing that predi-
cate 	�� �
B ��� 6 � #�� # . 0�8�6���0�8 holds. A detailed proof can be found in the appendix.

Lemma 3 (Main Lemma) Let
�

be a protocol, � be some branch, and � 0 a set of
of events; then:

91

If the predicate 	�� �
B � � 6 � # ��8�6�� 0 8 holds, then � ����6 � # ��8�6�� 0 # 8 holds,
too.

Altogether, soundness of the search procedure follows from the Lemmas 2 and 3,
and the secrecy theorem (Theorem 1).

Theorem 2 (Soundness) Let
�

be a protocol. If ��� � � 6 � # ��8�6�g B&�=6hf&8�#�� � i�6hf 8&8
holds

� for all transitions f � � ,

� for all message events ! � g �
	 ��6hf 8 , and

� for all branches � � 4�3��
?76 ! 8 ,
then

�
is discreet.

Our method, however, is not complete. If one of the proof obligations can not
be shown to hold, then one may not necessarily conclude that the protocol is not
discreet. Moreover, there are occult protocols for which our search procedure does
not terminate; such an example can be found in Section 5.

Let us return to proving occultness of the rule ��� � � ; for the branch � K 6!/ �5# ' 253�4I6!,98 (�8
the derivation starts as follows.

�L�
� � 6 � � � # ��8�6@��� � ��8
� � 	�� �
B ��� 6 � � � # ��8�6 ' ' /�� � (� ' ,�#&- (5#�8

7 ' /���#&, (����� ��� ��8 (
� � �&�5��� 6 � � � # ��8�6 ' ' /���� (� ' , #&- (5#�8

7 ' /���#&, (����� ��� � 8 (
� � �7�
� � 	 � 6 � � � # ��8�6 ' /���#&, (����� ��� � 8��

����� �76 � � � # ��8�6 ' / � #&, (������ ��� � 8
Since only the first rule of the Needham-Schroeder-Lowe protocol contains a mes-
sage of the form

' / � #&, (����� ��� � in its 	I��	�� ,
�I�
��� 	�� 6 � ��� # ��8�6 ' / ��#&,�(����� ��� � 8

� � 	 �&�
B ��� 6 � � � # ��8�6 ' ' / � � (� ' ,�#&- ((�8
� � �!B + �

This reduces to �!B + � because of the disjoint book test.

���
� �76 � ��� # ��8�6 ' / ��#&,�(����� ��� � 8
� � 	�� �
B � � 6 � ��� # ��8�6!/ ��#&,98
� � �!B + �

92

since 6!/ � # ' 25354=6!,98 (�8 � � 4�3��
?I6 7 / � #&,:8!8 . Consequently, rule ��� � � is occult.
Derivations based on the predicates in Definition 3 can be visualized as search

trees. These search trees have set of events as nodes, the edges are labeled either
with a basic test or with the name of one of the search steps. A leaf is �!B + � if one
of the basic tests succeeds, and ���
� 	 � if all the basic tests fail and if there is no
more message in the set of events of the parent node. Branching corresponds to a
conjunction, and disjunctions are realized by copying derivation trees. For the rule
��� � � and the branch 6!/ � # ' 253�4I6!,98 (�8 , for example, the run of 	�� � ��� � is visualized
as follows.

fake

backstep

�� � � �� �
true

disjointbook

honest

true

	
 � � � �
	
 � � � � �
 � � � � ��� LI[�P � �

	
 � � ��� �
	
 � � � � �
In general, the search tree generated by the predicates in Definition 3 may

be infinitely branching whenever there is an infinite set of protocol transitions.
However, the set of honest transitions is usually generated by a finite set of rules
on the form B � K g B&��6@B � 8 j#k g ��	 ��6@B ��8 , such that each transition f of the protocol
is obtained by a substitution � , i.e. g B �76hf&8 K g B �76@B ��8 � , � �Di�6hf&8 K � �Di�6@B ��8 � ,
etc %�%�% The remainder of this section is devoted to lifting the results above from
transitions to rules. In this way, we obtain occultness proof obligations for rules
which possibly contain variables.

The notion of branches has to be extended to include messages fields containing
variables " by adding the case 4�3��
?I6 " # . 0�8 K ' 6 "$# . 0�8 (to Definition 1. Now,
the search algorithm in Definition 3 is lifted to this new case of field variables in
branches.

Definition 4 Let
�

be a protocol, � be a branch, and B � be a rule; then:

��� � � � 6 � # ��8�6@B�� 8 defK
���� ���
� � � 4�3��
?76�� �
��� 6�g B �I6@B � 8 8&8

if � K 6�� # 8 and � is a variable;
�L�
� � 6 � # ��8�6@B � 8

otherwise.

The soundness of this extension follows from the following fact.

Lemma 4 If ��� � � ��6 � # ��8�6�g B �C6@B�� 8�#�� � i�6@B�� 8 8 holds for all ! � g ��	 ��6@B ��8 , for all� � 4�3��
?=6 ! 8 , then

93

� for all instances f of rule B � ,
� for all message events ! � � g ��	���6hf&8 ,
� for all branches � � 4�3��
?76 ! � 8

the predicate ��� � � 6 � # ��8�6�g B&�I6hf&8 #�� � i�6hf 8 8 holds.

Let � � 443��
?=6 ! �<8 such that ! � � g ��	 � 6hf&8 . If � � 4�3��
?I6 ! 8 , then the predicate
��� � � 6 � # ��8�6�g B&�I6hf&8 #�� � i�6hf 8 8 holds by the definition of ��� � � � 6 � # ��8�6�g B&�I6@B � 8�#�� �Di�6@B � 8&8 .
Otherwise, if � K 6�� # . 0�8 comes from an instantiation � of a field variable, there
exists " � 2
/
:10@> 6 ! 8 such that 6 "$# . G 8 � 4�3��
?=6 ! 8 and 6�� # . ��8 � 443��
?=6 " � 8
with

. 0 K . G " . � . Now, �L�
� � � 6 � # 6 " # . G 8 8�6�g B �I6@B ��8�#�� �Di�6@B � 8 8 holds, and

consequently 6 "$# . G 8 � � 443��
?I6�� �
��� 6�g B&�76@B�� 8 8 8 , � � � 4�3��
?I6�� �
��� 6�g B �76@B � � 8&8 8 , and
finally �L�
� � 6 � # ��8�6�g B �=6hf&8�#�� �Di�6hf&8&8 hold. This finishes the proof of Lemma 4.

Theorem 3 Let
�

be a protocol. If �L�
� � � 6 � # ��8�6�g B �=6@B � 8�#�� � i�6@B�� 8 8 holds

� for all rules B � � � ,

� for all message events ! � g �
	 ��6@B�� 8 , and

� for all branches � � 4�3��
?76 ! 8 ,
then

�
is discreet.

� �����3� � � �3��C� �6��� � �'�(� � =" �;$%��&? �
(0)� � ��C� � E $%�@���6R
(1): �;���;��� � �Z "#��$���&? �E $���� � R A W�C� �KE &,� �M$%� � � � � � GIHVJML [P �R
(2): ��� � �'�(� � =">�;$%��&?)�E &4�Z�;$%�������'�%�Z GIHVJMLI[P R A W�C� �KE ��&,� � � ��� � � � ���� GIHKJ`L NQP �
(3)��$%�'� � �3 �GIHVJMLI[�PVR �KE �M&4� � � �;� ����� ���Z �GIHVJML NQP�� U!
R W�C� � E UY�Z�����
 � � � RS (4)

Figure 3: Encoding of the Yahalom protocol.

94

� �@� � � ��C� ����� � �
 =">��$���&(6
(0)� � ��C� �)E $%��&,��� � R
(1): �;� � �3 "#�;$%��&? �E $%�'&4������R A W�C� � E �;$%��&,�����<��� � �Z GIHKJML NQP ���$%�'&4�����2�@� � �3 �GIHVJ`L [PKRS (2)� E UY�^�;$%�@&,��������� � �Z
GIHKJML [�PVR ����C� �)E UY�Z�����) � � � �����'RS (3)�)E �;$%��&,��� � ���(� � GIHKJMLONQP ��;���) � � � �'�%�Z �R W�C� �)E ������ � � � RS (4)

Figure 4: Encoding of the Kao Chow Repeated Authentification protocol.

� �@� � ��C� �6�����2 =">��$ * ��$ B D (0)�������2 "#��$ * ��$ B � W�C� � E $ * �@$ B �������
��$ �
��;$ * �����)
GIHKJML^N	PSR (1)� E $ * ��$ B �������
��$ �

���$ * ��� � GIHVJ`LONQP R W�C� � E ��$ * �'$ B ��� � GIHKJML^N � P R (2)

Figure 5: A protocol which requires at least � back steps for proving occultness.

5 Examples

In the previous sections, we have already demonstrated that the Otway-Rees pro-
tocol can be proved to be occult using only basic tests. Likewise, the occultness
proof of the Needham-Schroeder-Lowe protocol requires at most one back step for
each rule and each branch. Here we give an overview of the proof of Yahalom’s
protocol, which requires up to two back steps for proving occultness. Moreover,
we demonstrate the incompleteness of our algorithm with an example of an oc-
cult protocol for which the search procedure is non-terminating. Then, we give
an example of a protocol that requires at least � back steps in proving occultness.
Finally, we use a failed proof attempt of the original Needham-Schroeder protocol
to show that it is indeed not occult.

Yahalom Protocol. This protocol has been studied extensively by Paulson [14].
An encoding of the Yahalom protocol (without state events) can be found in Fig-
ure 3. Occultness of the initial rule (1) is obvious. For verifying occultness of
rule (2) we have to consider the two branches 6!/ � # ' >�?5: 6!-L8 (�8 , 6!/���# ' >�?�: 6!-L8 (�8 of
the single message in the post.

95

db

true

 �

� � �
 0���� ��� � � � :� ��0�� �� ++ � �� � 0�� �
 � ��* � � � �
 � � � �
	
true

� � �
 0���� ��� � � � :� ��0�� �� ++ � �� ��0�� �
 � � * � � � �
 � � � ��	

In verifying occultness of rule (3) four branches have to be considered. Oc-
cultness for the cases 6!/ ��# ' >�?�: 6!,98 (�8 , 6 . � ��# ' >�?5: 6!,98 (�8 , and 6 . � ��# ' >�?5: 6!-�8 (�8 is
established using the disjoint book test, whereas the branch 6!/ � # ' >�?�: 6!,98 (�8 needs
two back steps.

back

fake

fake
true

back

true true

honest

honest

�
 � �!* � � �
	
 � � � �� � �
 � � � � � GIHVJMLI[P � 	
�
 � �!* � � �
	
 � � � �� � � � 	

�
 � �!* � � �
	
 � � � �� � � � 	

 �

 � �

�� � � � � � �

��
 � � � � � GIHVJ`LI[P � �

Finally, the branches 6 " # � 8 and 6!/���# ' . � ��(�8 have to be considered for es-
tablishing occultness of the rule (4). The proof for the 6 " # � 8 branch only needs

the basic test “
� � 4�3��
?76&%�%�%�8 ” and the following proof for the branch 6!/ � # ' . � ��(�8

requires two back steps.
��
 � �!* � � � � � � � GIHVJMLONQP �� � �
back

honest

back

true

 �
honest fake

fake

�
 � �!* � � �
	
 � � � �� � �
 � � � � � GIHVJMLI[�P � 	
true

true

� �

�� � � * � � � � � � � �

��
 � �!* � � � � � � � GIHVJMLONQP � ��
 � � * � � ��	
 � � � �� � �
 � � � � � GIHVJ`LI[P � 	

Altogether, the Yahalom protocol is occult.

96

The Kao Chow Repeated Authentification Protocols. An encoding of the Kao
Chow repeated authentification protocol can be found in Figure 4. All verification
conditions can be proved easily, except for rule three and the branch 6!/ �5# ' . � ��(�8 .
In this case, the procedure creates an infinite tree as visualized below. Conse-
quently, our procedure fails to detect occultness of this protocol.

�
 � � � � �!* � � ������� [� �
�� � �
 � � � � �!* � � ������� [�

�� ���
 � � � � �!* � � � ����� [� �
back

honest (rl 2)

true

 �
honest (rl 3) fake

fakehonest (rl 3)
back

�� ���
 � � � � �!* � � � ����� [�
�
 � � � � � * � � � ����� [� ��
 � � � � �!* � � � ����� [

�
 * � � � �
 � � � 	 �� � � � � � 	

��
 � � � � � * � � ������� [� �

Arbitrary Number of Backsteps. Occultness of the Otway-Rees protocol is
proved using only basic tests, the proof of the Needham-Schroeder-Lowe proto-
col needs at most one back step for verifying each occultness obligation, and the
Yahalom is proved using at most two back steps. In general, given a natural num-
ber � , there is an occult protocol which requires at least � back steps for proving
occultness. Such a family of protocols is given in Figure 4. The proof tree for
demonstrating occultness of the rule 2 of this protocol is given as follows; obvi-
ously, there is no deduction requiring less back steps.

97

 � �
	
 * � B �
true

���

��� �
 * � � � GIHVJMLONQP �
back

 �
truetrue

���
honest fake� * � � �
 � �
	
 * � B �

� * � B ������� � � �
 * � � � GIHVJMLONQP �
�
 * � � � GIHVJMLONQP �

back
honest

fake

true

fake

back
honest

fake

� B ������� � � �
 * � � � GIHVJMLONQP �
fake

Failed Proof Attempts. Lowe [8] showed that the original description of the
Needham-Schroeder [12] protocol was flawed. The encoding of this protocol is
identical to the one in Figure 2 except for the post of rule 2. This post is now
assumed to be given by

' 7 ' / �5#&/���(����� � � 8�(. Our search procedure terminates with
an incomplete proof for this modified rule.

back

honest fake

true

false

�
	�������������������������! "�

# �$���%� �'&(�$)*��+*,-�.�	/�$������)0�1�����2��354��! 6 �
	 ���7������ !�

Using this failed proof attempt, we can show that the protocol is indeed not occult.
The construction starts at the leaf labelled with ���
� 	 � . Its parent node contains
a cast and is exactly the g B&� of one of the rules, say B � , of the protocol. Now,
we consider a (partial) run of the protocol where all the rules preceding B � in the
protocol description are applied in the given order.

�
 � � � �j>k ' ' / � #&/�� (� ' , #&- � ((
' ' / �5#&/�� (� ' , #&- � ((�j>k ' 7 ' /��5#&,�(����� ��� � � 8�(

98

Next, we simulate an attack by following the branch from the ���
� 	�� leaf up to its
root. The parent node of the ��� � 	 � leaf is directly connected with the root by an
honest edge. �

' /���# (� ' ,�#&- (5#
7 ' / � #&,�(������ ��� � � 8�� �j>k ' 7 ' / ��#&/�� (����� ���� 8 (

Having reached the root of the tree, one applies the rule for which our algorithm
fails. ' 7 ' / � #&/�� (����� ���� 8�(�j>k ' 7 ' /�� (����� ��� � 8�(
Thus

' /�� (����� ��� � �� e 6@A�� ��6 ' /�� #&/�� (� ' , #&- � (
8 8 , and the protocol is not occult.

6 Discussion

We have developed a procedure for proving the occultness of protocol rules and
proved its correctness. If the procedure terminates with �!B + � , then the argument
rule is occult. Moreover, occultness of all rules implies that the protocol is indeed
secure. Our procedure follows the informal reasoning steps in [10], mechanizations
do not require any user intervention, and there is a visually appealing graphical
representation of occultness proofs.

We have tested our proof procedure on selected protocols from the the Clark
and Jacob survey [2]. Usually, we can prove occultness using only a small number
of search space extensions. The Otway-Rees and the Carlson protocol, for exam-
ple, are proved to be secure using only basic tests, the Needham-Schroeder protocol
needs at most one back step for verifying occultness of each rule and branch, and
the Yahalom protocol needs at most two back steps for verifying each occultness
conditions. We have also given examples of protocols whose occultness proofs
need at least � back steps for an arbitrary natural number.

Much work remains to be done. In order to deal with many protocols used in
practice, we have to extend our methods and support protocol features like hashing
and timestamps. The algorithm described here is not a semi-decision procedure in
the sense that occultness is eventually detected. It may be interesting to investigate
subclasses of protocols which only require a bounded number of back steps, and for
which our algorithm acts as a decision procedure. Also, we do not yet know under
what circumstances a failed proof attempt implies that the protocol is insecure.
An advantage of our method seems to be that it permits constructing attacks from
failed proof attempts. For example from the failed proof attempt for the original
Needham-Schroeder protocol in Section 5 we can construct Lowe’s man-in-the-
middle attack. We plan to investigate methods for constructing such attacks from
failed proof attempts.

99

References

[1] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In 12th IEEE Computer Security Foundations
Workshop, pages 55–69. IEEE Computer Society, 1999.

[2] J. Clark and J. Jacob. A survey of authentication proto-
col literature. http://www.cs.york.ac.uk/�jac/ pa-
pers/drareviewps.ps, 1997.

[3] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In 13th
IEEE Computer Security Foundations Workshop, pages 144–158. IEEE Com-
puter Society, 2000.

[4] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Formal Methods and Security Protocols, Federated
Logic Conference, 1999.

[5] B. Dutertre, H. Saı̈di, and V. Stavridou. Intrusion-Tolerant Group Manage-
ment in Enclaves. Accepted for publication at the International Conference
on Dependable Systems and Networks (DSN’2001), 2001.

[6] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify au-
thentication protocols. In Theorem Proving in Higher Order Logics, TPHOL’s
97, volume 1275 of Lecture Notes in Computer Science, pages 121–136.
Springer-Verlag, August 1997.

[7] L. Gong. Enclaves: Enabling Secure Collaboration over the Internet. IEEE
Journal of Selected Areas in Communications, 15(3):567–575, April 1997.

[8] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proceedings of TACAS, volume 1055 of Lecture Notes in
Computer Science, pages 147–166. Springer-Verlag, 1996.

[9] C. Meadows. Invariant generation techniques in cryptographic protocol anal-
ysis. In 13th IEEE Computer Security Foundations Workshop, pages 159–
167. IEEE Computer Society, 2000.

[10] J. Millen and H. Rueß. Protocol-independent secrecy. In 2000 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society, 2000.

[11] D. Monniaux. Decision procedures for the analysis of cryptographic proto-
cols by logics of belief. In 12th Computer Security Foundations Workshop,
Mordano, Italy, June 1999. IEEE Computer Society.

100

[12] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–998, De-
cember 1978.

[13] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM
Operating System Review, 21(1):8–10, 1987.

[14] L. Paulson. Relations between secrets: Two formal analyses of the Yahalom
protocol. Technical Report TR432, University of Cambridge, Computer Lab-
oratory, July 1997.

[15] L. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1):85–128, 1998.

[16] H. Rueß and J. Millen. Local secrecy for stated-based models. In Proc. of the
Workshop on Formal Methods in Computer Security (FMCS’2000), Chicago,
IL, 2000.

[17] S. Schneider. Verifying authentication protocols in CSP. IEEE Transactions
on Software Engineering, 24(9):741–758, September 1998.

[18] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In
11th IEEE Computer Security Foundations Workshop, pages 66–78. IEEE
Computer Society, 1998.

7 Proof of the Main Lemma

Main Lemma:

If the predicate 	 � � � � � 6 � 8�6�� # . 0�8�6���0 8 holds, then � � �76 � #�� # . 0 8�6���0 # j 8
holds, too.

Proof : Instead of proving that � � �76 � #�� # . 0�8�6�� 0 #&/ 0�8 holds, we prove the stronger
property � ����	 �!B �
��� 6 � #�� # . 0 8�6���0 8 defined to hold iff for all

�
-configurations 6��# � # � 8

such that

1. � �
�=	 � � � � 	�6�� 0 8 � � and

2. � � A��&�76��8
it is the case that

� � A��&��6��8 -K�� ,. The set ���
�C	 � � � ��	�6�� 0 8 includes all non-state
events in ��0 . Obviously, � � ��	 �!B �
��� 6 � #�� # . 0�8�6�� 0 8 implies � � �76 � #�� # . 0 8�6���0 # j 8 .
The proof is by induction on the minimum number of back steps for deriving that
	��&� B � � 6 � #�� # . 0�8�6�� 0�8 holds.

101

Initialization. If the derivation of 	 �&�
B ��� 6 � #�� # . 0 8�6�� 0 8 terminates with true

and if no back steps has been used, then either 6�� # . 0�8 � � 4�3��
?76�� �
� � 6�� 0�8 8 or
���56�� 0 #�� # . 0 8 holds. Using basic tests one concludes that � � ��	 �!B �
��� 6 � #�� # . 0 8�6�� 0 8
holds in both cases.

Step. Assume that � � ��	 �!B �
��� 6 � #�� # . 0 8�6���0 8 holds for every 	�� �
B ��� 6 � #�� # . 0�8�6���0 8
with a derivation that uses less or equal than � of back steps. Furthermore, consider�

, � ,
. 0 , and � 0 such that the derivation of 	��&� B � � 6 � #�� # . 0 8�6�� 0 8 terminates with

�!B + � and uses � ��� back steps, and assume a
�

-configuration 6�C# �$# ��8 such that
���
�C	 � � � ��	76�� 0 8 � � and � � A �&�56� 8 .

Consequently, the back step terminates with �!B + � , and there exists a ! � � 0
and � � 2�/
: 0 > 6 ! 8 ,such that �7�
����	 � 6 � #�� # . 0�8�6 ! 8 ������� �56 � #�� # . 0�8�6 ! 8 K f ��� �
and the derivation of �7�
����	 � 6 � #�� # . 0�8�6 ! 8 and ����� �76 � #�� # . 0�8�6 ! 8 uses at most
� back steps. Now, ! is in �90 , so ! is in � . By induction on � there exists two
global states � G , � � such that

� ����� �
�&6 � 8�6�78�6�� G # � � 8�� � �
�=	�� � � � 	�6�� G 8 � ���
! � 2
/
:10@> 6�� � 8�� ! -� 2�/
: 0 > 6�� G 8 .

Apply case analysis depending on whether the global extension is honest or faked.

Case �7� ��� 	�� 6 � 8�6�� G # � ��8 : There exists an applicable transition f � � such that
� � K g ��	 ��6hf&8�"J6�� G
I6�g B&�76hf 8�� A�� � � � 	�8 8 ; thus, � �
�=	�� � � � 	76�g B �76hf&8&8 � � and
! � 2�/ :10 > 6�g ��	 ��6hf&8&8 . Since �7� ��� 	�� 6 � #�� # . 0 8�6 ! 8 reduces to �!B + � and ! �
2
/
:10@>�6�g ��	 � 6hf&8 8 , we have 	��&� B � � 6 � #�� # . 0�8�6�g B �I6hf&8 8 holds, and its derivation
uses at most � back steps. Thus, � � ��	 �!B �
��� 6 � #�� # . 0 8�6�g B �I6hf&8&8 holds. Be-
cause of the facts ��� �=	 � � � ��	76�g B&�76hf 8 8 � � and � � A�� �56��8 , it follows
that
� � A��&� 6� 8 K �

. Consequently, the predicate � � ��	��!B � ��� 6 � #�� # . 0 8�6���0 8
holds.

Case ����� �76�I8�6�� G # � � 8 : By definition of ����� � , � � K � G " ' ! � (where ! � �a/	b�c 6�� �
��� 6�� 8 " �78 . Since ! � 2�/
: 0 > 6�� � 8 and ! -� 2�/
:10@> 6�� G 8 , we know
that ! � 2
/
:10@> 6Ka /	b�c�6�� �
��� 6�� 8 " �78 8 . It is easy to verify that

2�/
: 0 > 6Ka/Qb6c�6�� �
����6�� 8 "��I8 8 K
a/	b�c56�� �
��� 6�� 8 "��I8#" 2�/ :10 > 6�� � ��� 6�� 8 " �78 .

In addition, ! -� 2
/
:10@> 6�78 (unless � � 2
/
:10@> 6�78 , in which case � -�
��� ���H6��8 by choice of � , which contradicts the hypothesis � � ��� ��� 6��8)
and ! -� 2
/
:10@>�6�� � ��� 6�� 8 8 , thus ! -� 2
/
:10@> 6�� �
��� 6�� 8 " �I8 . Consequently,

102

! must have been synthesized, meaning " � a/	b�c 6�� �
��� 6�� 8 " �78 if ! K
' " (+* or there exist ! G # ! � such that ! K ! G # ! � and ! G # ! � � a/	b�c56�� �
� � 6�� 8 "
�I8 .
Now, let ��� K �'" ' ! G # ! ��((respectively � � K ��" ' ")(). It is easy to
verify that 6�C# � � # ��8 is still a

�
-configuration, and we get

' ! G # ! ��(� � �
(respectively

' " (� � �) and � � A�� �56��8 .
Assume (without loss of generality) that � � 2
/
:10@> 6 ! G 8 . By definition of
����� ��6�78�6�� G # � � 8 , 	�� �
B � � 6 � #�� # . 0 8�6 ' ! G (�8 (respectively 	��&� B � � 6 � #�� # . 0 8�6 ' ")(�8)
holds and its derivation uses at most � back steps. Therefore, the predicate
� ����	��!B �
�7� 6 � #�� # . 0�8�6 ' ! G (�8 (resp. � ����	 �!B �
��� 6 � #�� # . 0�8�6 ' " (�8) holds. Fi-
nally, one concludes that � � ��	 �!B �
��� 6 � #�� # . 0�8�6�� 0�8 holds.

103

An Overview of Formal Verification
For the Time-Triggered Architecture

�

John Rushby
Computer Science Laboratory

SRI International
333 Ravenswood Avenue

Menlo Park, CA 94025, USA
rushby@csl.sri.com

Abstract

We describe formal verification of some of the key algorithms in the Time-
Triggered Architecture (TTA) for real-time safety-critical control applications. Some
of these algorithms pose formidable challenges to current techniques and have been
formally verified only in simplified form or under restricted fault assumptions. We de-
scribe what has been done and what remains to be done and indicate some directions
that seem promising for the remaining cases and for increasing the automation that can
be applied. We also describe the larger challenges posed by formal verification of the
interaction of the constituent algorithms and of their emergent properties.

1 Introduction

The Time-Triggered Architecture (TTA) provides an infrastructure for safety-critical real-
time control systems of the kind used in modern cars and airplanes. Concretely, it comprises
an interlocking suite of distributed algorithms for functions such as clock synchronization
and group membership, and their implementation in the form of TTA controllers, buses,
and hubs. The suite of algorithms is known as TTP/C (an adjunct for non safety-critical
applications is known as TTP/A) and was originally developed by Kopetz and colleagues at
the Technical University of Vienna [28]; its current specification and commercial realization
are by TTTech of Vienna [75]. More abstractly, TTA is part of a comprehensive approach
to safety-critical real-time system design [25] that centers on time-triggered operation [26]
and includes notions such as “temporal firewalls” [24] and “elementary” interfaces [27].

�

This research was supported by NASA Langley Research Center under Cooperative Agreement NCC-1-
377 with Honeywell Incorporated, by DARPA through the US Air Force Rome Laboratory under Contract
F30602-96-C-0291, by the National Science Foundation under Contract CCR-00-86096, and by the NextTTA
project of the European Union.

104

The algorithms of TTA are an exciting target for formal verification because they are in-
dividually challenging and they interact in interesting ways. To practitioners and developers
of formal verification methods and their tools, these algorithms are excellent test cases—
first, to be able to verify them at all, then to be able to verify them with sufficient automa-
tion that the techniques used can plausibly be transferred to nonspecialists for use in similar
applications. For the developers and users of TTA, formal verification provides valuable
assurance for its safety-critical claims, and explication of the assumptions on which these
rest. As new versions of TTA and its implementations are developed, there is the additional
opportunity to employ formal methods in the design loop.

TTA provides the functionality of a bus: host computers attach to TTA and are able
to exchange messages with other hosts; in addition, TTA provides certain services to the
hosts (e.g., an indication which other hosts and their interface controllers are participating
reliably in network protocols). Because it is used in safety-critical systems, TTA must
be fault tolerant: that is, it must continue to provide its services to nonfaulty hosts in the
presence of faulty hosts and in the presence of faults in its own components. In addition,
the services that it provides to hosts are chosen to ease the design and construction of fault-
tolerant applications (e.g., in an automobile brake-by-wire application, each wheel has a
brake that is controlled by its own host computer; the services provided by TTA make
it fairly simple to arrange a safe distributed algorithm in which each host can adjust the
braking force applied to its wheel to compensate for the failure of one of the other brakes
or its host).

Serious consideration of fault-tolerant systems requires careful identification of the fault
containment units (components that fail independently), fault hypotheses (the kind, arrival
rate, and total number of faults to be tolerated), and the type of fault tolerance to be provided
(e.g., what constitutes acceptable behavior in the presence of faults: fault masking vs. fail
silence, self stabilization, or never-give-up). The basic goal in verifying a fault-tolerant
algorithm is to prove

fault hypotheses satisfied implies acceptable behavior.

Stochastic or other probabilistic and experimental methods must then establish that the
probability of the fault hypotheses being satisfied is sufficiently large to satisfy the mission
requirements.

In this short paper, it is not possible to provide much by way of background to the topics
adumbrated above, nor to discuss the design choices in TTA, but a suitable introduction is
available in a previous paper [54] (and in more detail in [55]). Neither is it possible, within
the limitations of this paper, to describe in detail the formal verifications that have already
been performed for certain TTA algorithms. Instead, my goal here is to provide an overview
of these verifications, and some of their historical antecedents, focusing on the importance
of the exact fault hypotheses that are considered for each algorithm and on the ways in
which the different algorithms interact. I also indicate techniques that increase the amount

105

of automation that can be used in these verifications, and suggest approaches that may be
useful in tackling some of the challenges that still remain.

2 Clock Synchronization

As its full name indicates, the Time-Triggered Architecture uses the passage of time to
schedule its activity and to coordinate its distributed components. A fault tolerant dis-
tributed clock synchronization algorithm is therefore one of TTA’s fundamental elements.

Host computers attach to TTA through an interface controller that implements the
TTP/C protocol. I refer to the combination of a host and its TTA controller as a node.
Each controller contains an oscillator from which it derives its local notion of time (i.e., a
clock). Operation of TTA is driven by a global schedule, so it is important that the local
clocks are always in close agreement. Drift in the oscillators causes the various local clocks
to drift apart so periodically (several hundred times a second) they must be resynchronized.
What makes this difficult is that some of the clocks may be faulty.

The clock synchronization algorithm used in TTA is a modification of the Welch-Lynch
(also known as Lundelius-Lynch) algorithm [78], which itself can be understood as a par-
ticular case of the abstract algorithm described by Schneider [66]. Schneider’s abstract
algorithm operates as follows: periodically, the nodes decide that it is time to resynchro-
nize their clocks, each node determines the skews between its own clock and those of other
nodes, forms a fault-tolerant average of these values, and adjusts its own clock by that
amount.

An intuitive explanation for the general approach is the following. After a resynchro-
nization, all the nonfaulty clocks will be close together (this is the definition of synchro-
nization); by the time that they next synchronize, the nonfaulty clocks may have drifted
further apart, but the amount of drift is bounded (this is the definition of a good clock); the
clocks can be brought back together by setting them to some value close to the middle of
their spread. An “ordinary average” (e.g., the mean or median) over all clocks may be af-
fected by wild readings from faulty clocks (which, under a Byzantine fault hypothesis, may
provide different readings to different observers), so we need a “fault-tolerant average” that
is insensitive to a certain number of readings from faulty clocks.

The Welch-Lynch algorithm is characterized by use of the fault-tolerant midpoint as its
averaging function. If we have � clocks and the maximum number of simultaneous faults
to be tolerated is

�
(� ��� �), then the fault-tolerant midpoint is the average of the

�����
’st

and �
	 � ’th clock skew readings, when these are arranged in order from smallest to largest.
If there are at most

�
faulty clocks, then some reading from a nonfaulty clock must be at

least as small as the
�����

’st reading, and the reading from another nonfaulty clock must be
at least as great as the �	 � ’th; hence, the average of these two readings should be close to
the middle of the spread of readings from good clocks.

The TTA algorithm is basically the Welch-Lynch algorithm specialized for
�����

(i.e.,
it tolerates a single fault): that is, clocks are set to the average of the � nd and ��	 � ’st

106

clock readings (i.e., the second-smallest and second-largest). This algorithm works and
tolerates a single arbitrary fault whenever ����� . TTA does not use dedicated wires to
communicate clock readings among the nodes attached to the network; instead, it exploits
the fact that communication is time triggered according to a global schedule. When a node
� receives a message from a node � , it notes the reading of its local clock and subtracts a
fixed correction term to account for the network delay; the difference between this adjusted
clock reading and the time for � ’s transmission that is indicated in the global schedule yields
� ’s perception of the skew between clocks � and � .

Not all nodes in a TTA system need have accurate oscillators (they are expensive), so
TTA’s algorithm is modified from Welch-Lynch to use only the clock skews from nodes
marked1 as having accurate oscillators. Analysis and verification of this variant can be
adapted straightforwardly from that of the basic algorithm. Unfortunately, TTA adds an-
other complication.

For scalability, an implementation on the Welch-Lynch algorithm should use data struc-
tures that are independent of the number of nodes—i.e., it should not be necessary for each
node to store the clock difference readings for all (accurate) clocks. Clearly, the second-
smallest clock difference reading can be determined with just two registers (one to hold the
smallest and another for the second-smallest reading seen so far), and the second-largest
can be determined similarly, for a total of four registers per node. If TTA used this ap-
proach, verification of its clock synchronization algorithm would follow straightforwardly
from that of Welch-Lynch. Instead, for reasons that are not described, TTA does not con-
sider all the accurate clocks when choosing the second-smallest and second-largest, but just
four of them.

The four clocks considered for synchronization are chosen as follows. First, TTA is
able to tolerate more than a single fault by reconfiguring to exclude nodes that are detected
to be faulty. This is accomplished by the group membership algorithm of TTA, which is
discussed in the following section.2 The four clocks considered for synchronization are
chosen from the members of the current membership; it is therefore essential that group
membership have the property that all nonfaulty nodes have the same members at all times.
Next, each node maintains a queue of four clock readings3; whenever a message is received
from a node that is in the current membership and that has the SYF field set, the clock
difference reading is pushed on to the receiving node’s queue (ejecting the oldest reading
in the queue). Finally, when the current slot has the synchronization field (CS) set in the
MEDL, each node runs the synchronization algorithm using the four clock readings stored
in its queue.

Formal verification of the TTA algorithm requires more than simply verifying a four-
clocks version of the basic Welch-Lynch algorithm: for example, the chosen clocks can

1By having the SYF field set in the MEDL (the global schedule known to all nodes).
2A node whose clock loses synchronization will suffer send and/or receive faults and will therefore be

detected and excluded by the group membership algorithm.
3It is described as a push-down stack in the TTP/C specification [75], but this seems to be an error.

107

change from one round to the next. However, verification of the basic algorithm provides a
foundation for the TTA case.

Formal verification of clock synchronization algorithms has quite a long history, be-
ginning with Rushby and von Henke’s verification [60] of the interactive convergence
algorithm of Lamport and Melliar Smith [32]; this is similar to the Welch-Lynch algo-
rithm, except that the egocentric mean is used as the fault-tolerant average. Shankar [70]
formally verified Schneider’s abstract algorithm and its instantiation for interactive con-
vergence. This formalization was subsequently improved by Miner (reducing the diffi-
culty of the proof obligations needed to establish the correctness of specific instantiations),
who also verified the Welch-Lynch instantiation [38]. All these verifications were un-
dertaken with EHDM [61], a precursor to PVS [41]. The treatment developed by Miner
was translated to PVS and generalized (to admit nonaveraging algorithms such as that of
Srikanth and Toueg [73] that do not conform to Schneider’s treatment) by Schwier and von
Henke [69]. This treatment was then extended to the TTA algorithm by Pfeifer, Schwier
and von Henke [45]. The TTA algorithm is intended to operate in networks where there are
at least four good clocks, and it is able to mask any single fault in this circumstance. Pfeifer,
Schwier and von Henke’s verification establishes this property. Additional challenges still
remain, however.

In keeping with the never give up philosophy that is appropriate for safety-critical ap-
plications, TTA should remain operational with less than four good clocks, though “the
requirement to handle a Byzantine fault is waived” [75, page 85]. It would be valuable
to characterize and formally verify the exact fault tolerance achieved in these cases. One
approach to achieving this would be to undertake the verification in the context of a “hy-
brid” fault model such as that introduced for consensus by Thambidurai and Park [74]. In
a pure Byzantine fault model, all faults are treated as arbitrary: nothing is assumed about
the behavior of faulty components. A hybrid fault model introduces additional, constrained
kinds of faults and the verification is extended to examine the behavior of the algorithm
concerned under combinations of several faults of different kinds. Thambidurai and Park’s
model augments the Byzantine or arbitrary fault model with manifest and symmetric faults.
A manifest fault is one that is consistently detectable by all nonfaulty nodes; a symmet-
ric fault is unconstrained, except that it appears the same to all nonfaulty nodes. Rushby
reinterpreted this fault model for clock synchronization and extended verification of the in-
teractive convergence algorithm to this more elaborate fault model [49]. He showed that the
interactive convergence algorithm with � nodes can withstand � arbitrary, � symmetric, and
� manifest faults simultaneously, provided ��� � � � ��� � � . Thus, a three-clock system
using this algorithm can withstand a symmetric fault or two manifest faults.

Rushby also extended this analysis to link faults, which can be considered as asymmet-
ric and possibly intermittent manifest faults (i.e., node � may obtain a correct reading of
node � ’s clock while node � obtains a detectably faulty reading). The fault tolerance of the
algorithm is then ��� � � � ��� � � ��� where

�
is the maximum, over all pairs of nodes, of

the number of nodes that have faulty links to one or other of the pair.

108

It would be interesting to extend formal verification of the TTA algorithm to this fault
model. Not only would this enlarge the analysis to cases where fewer than three good clocks
remain, but it could also provide a much simpler way to deal with the peculiarities of the
TTA algorithm (i.e., its use of queues of just four clocks). Instead of explicitly modeling
properties of the queues, we could, under a fault model that admits link faults, imagine that
the queues are larger and contain clock difference readings from the full set of nodes, but
that link faults reduce the number of valid readings actually present in each queue to four
(this idea was suggested by Holger Pfeifer). A recent paper by Schmid [64] considers link
faults for clock synchronization in a very general setting, and establishes bounds on fault
tolerance for both the Welch-Lynch and Srikanth-Toueg algorithms and I believe this would
be an excellent foundation for a comprehensive verification of the TTA algorithm.

All the formal verifications of clock synchronizations mentioned above are “brute
force”: they are essentially mechanized reproductions of proofs originally undertaken by
hand. The proofs depend heavily on arithmetic reasoning and can be formalized at rea-
sonable cost only with the aid of verification systems that provide effective mechanization
for arithmetic, such as PVS. Even these systems, however, typically mechanize only linear
arithmetic and require tediously many human-directed proof steps (or numerous interme-
diate lemmas) to verify the formulas that arise in clock synchronization. The new ICS
decision procedures [16] developed for PVS include (incomplete) extensions to nonlinear
products and it will be interesting to explore the extent to which such extensions simplify
formal verification of clock synchronization algorithms.4 Even if all the arithmetic rea-
soning were completely automated, current approaches to formal verification of clock syn-
chronization algorithms still depend heavily on human insight and guidance. The problem
is that the synchronization property is not inductive: it must be strengthened by the con-
junction of several other properties to achieve a property that is inductive. These additional
properties are intricate arithmetic statements whose invention seems to require considerable
human insight. It would be interesting to see if modern methods for invariant discovery and
strengthening [6, 7, 76] can generate some of these automatically, or if the need for them
could be sidestepped using reachability analysis on linear hybrid automata.

All the verifications described above deal with the steady-state case; initial synchro-
nization is quite a different challenge. Note that (re)initialization may be required during
operation if the system suffers a massive failure (e.g., due to powerful electromagnetic ef-
fects), so it must be fast. The basic idea is that a node that detects no activity on the bus for
some time will assume that initialization is required and it will broadcast a wakeup mes-
sage: nodes that receive the message will synchronize to it. Of course, other nodes may
make the same determination at about the same time and may send wakeup messages that
collide with others. In these cases, nodes back off for (different) node-specific intervals
and try again. However, it is difficult to detect collisions with perfect accuracy and simple
algorithms can lead to existence of groups of nodes synchronized within themselves but un-

4It is not enough to mechanize real arithmetic on its own; it must be combined with inequalities, integer
linear arithmetic, equality over uninterpreted function symbols and several other theories [50].

109

aware of the existence of the other groups. All of these complications must be addressed in
a context where some nodes are faulty and may not be following (indeed, may be actively
disrupting) the intended algorithm. The latest version of TTA uses a star topology and
the initialization algorithm is being revised to exploit some additional safeguards that the
central guardian makes possible [42]. Verification of initialization algorithms is challeng-
ing because, as clearly explained in [42], the essential purpose of such an algorithm is to
cause a transition between two models of computation: from asynchronous to synchronous.
Formal explication of this issue, and verification of the TTA initialization algorithm, are
worthwhile endeavors for the future.

3 Transmission Window Timing

Synchronized clocks and a global schedule ensure that nonfaulty nodes broadcast their mes-
sages in disjoint time slots: messages sent by nonfaulty nodes are guaranteed not to collide
on the bus. A faulty node, however, could broadcast at any time—it could even broadcast
constantly (the babbling failure mode). This fault is countered by use of a separate fault
containment unit called a guardian that has independent knowledge of the time and the
schedule: a message sent by one node will reach others only if the guardian agrees that it is
indeed scheduled for that time.

Now, the sending node, the guardian, and each receiving node have synchronized
clocks, but there must be some slack in the time window they assign to each slot so that
good messages are not truncated or rejected due to clock skew within the bounds guaran-
teed by the synchronization algorithm. The design rules used in TTA are the following,
where � is the maximum clock skew between synchronized components.

� The receive window extends from the beginning of the slot to ��� beyond its allotted
duration.

� Transmission begins ��� units after the beginning of the slot and should last no longer
than the allotted duration.

� The bus guardian for a transmitter opens its window � units after the beginning of
the slot and closes it ��� beyond its allotted duration.

These rules are intended to ensure the following requirements.

Agreement: If any nonfaulty node accepts a transmission, then all nonfaulty nodes do.

Validity: If any nonfaulty node transmits a message, then all nonfaulty nodes will accept
the transmission.

Separation: messages sent by nonfaulty nodes or passed by nonfaulty guardians do not
arrive before other components have finished the previous slot, nor after they have
started the following one.

110

Formal specification and verification of these properties is a relatively straightforward
exercise. Description of a formal treatment using PVS is available as a technical report [57].

4 Group Membership

The clock synchronization algorithm tolerates only a single (arbitrary) fault. Additional
faults are tolerated by diagnosing the faulty node and reconfiguring to exclude it. This
diagnosis and reconfiguration is performed by the group membership algorithm of TTA,
which ensures that each TTA node has a record of which nodes are currently participating
correctly in the TTP/C protocol. In addition to supporting the internal fault tolerance of
TTA, membership information is made available as a service to applications; this supports
the construction of relatively simple, but correct, strategies for tolerating faults at the ap-
plication level. For example, in an automobile brake-by-wire application, the node at each
wheel can adjust its braking force to compensate for the failure (as indicated in the mem-
bership information) of the node or brake at another wheel. For such strategies to work,
it is obviously necessary that the membership information should be reliable, and that the
application state of nonmembers should be predictable (e.g., the brake is fully released).

Group membership is a distributed algorithm: each node maintains a private member-
ship list, which records all the nodes that it believes to be nonfaulty. Reliability of the
membership information is characterized by the following requirements.

Agreement: The membership lists of all nonfaulty nodes are the same.

Validity: The membership lists of all nonfaulty nodes contain all nonfaulty nodes and at
most one faulty node (we cannot require immediate removal of faulty nodes because
a fault must be manifested before it can be diagnosed).

These requirements can be satisfied only under restricted fault hypotheses. For example,
validity cannot be satisfied if new faults arrive too rapidly, and it is provably impossible to
diagnose an arbitrary-faulty node with certainty. When unable to maintain accurate mem-
bership, the best recourse is to maintain agreement, but sacrifice validity. This weakened
requirement is called clique avoidance.

Two additional properties also are desirable in a group membership algorithm.

Self-diagnosis: faulty nodes eventually remove themselves from their own membership
lists and fail silently (i.e., cease broadcasting).

Reintegration: it should be possible for excluded but recovered nodes to determine the
current membership and be readmitted.

TTA operates as a broadcast bus (even though the recent versions are stars topologi-
cally); the global schedule executes as a repetitive series of rounds, and each node is al-
located a broadcast slot in each round. The fault hypothesis of the membership algorithm

111

is a benign one: faults must arrive two or more rounds apart, and must be symmetric in
their manifestations: either all or exactly one node may fail to receive a broadcast message
(the former is called a send fault, the latter a receive fault). The membership requirements
would be relatively easy to satisfy if each node were to attach a copy of its membership list
to each message that it broadcasts. Unfortunately, since messages are typically very short,
this would use rather a lot of bandwidth (and bandwidth was a precious commodity in early
implementations of TTA), so the algorithm must operate with less explicit information and
nodes must infer the state and membership of other nodes through indirect means. This
operates as follows.

Each active TTA node maintains a membership list of those nodes (including itself)
that it believes to be active and operating correctly. Each node listens for messages from
other nodes and updates its membership list according to the information that it receives.
The time-triggered nature of the protocol means that each node knows when to expect a
message from another node, and it can therefore detect the absence of such a message.
Each message carries a CRC checksum that encodes information about its sender’s C-State,
which includes its local membership list. To infer the local membership of the sender of
a message, receivers must append their estimate of that membership (and other C-state
information) to the message and then check whether the calculated CRC matches that sent
with the message. It is not feasible (or reliable) to try all possible memberships, so receivers
perform the check against just their own local membership, and one or two variants.

Transmission faults are detected as follows: each broadcaster listens for the message
from its first successor (roughly speaking, this will be the next node to broadcast) to check
whether it suffered a transmission fault: this will be indicated by its exclusion from the
membership list of the message from its first successor. However, this indication is am-
biguous: it could be the result of a transmission fault by the original broadcaster, or of a
receive fault by the successor. Nodes use the local membership carried by the message from
their second successor to resolve this ambiguity: a membership that excludes the original
broadcaster but includes the first successor indicates a transmission fault by the original
broadcaster, and one that includes the original broadcaster but excludes the first successor
indicates a receive fault by the first successor.

Nodes that suffer receive faults could diagnose themselves in a similar way: their local
membership lists will differ from those of nonfaulty nodes, so their next broadcast will be
rejected by both their successors. However, the algorithm actually performs this diagnosis
differently. Each node maintains accept and reject counters that are initialized to 1 and 0,
respectively, following its own broadcast. Incoming messages that indicate a membership
matching that of the receiver cause the receiver to increment its accept count; others (i.e.,
those that indicate a different membership or that are considered invalid for other reasons)
cause it to increment its reject count. Before broadcasting, each node compares its accept
and reject counts and shuts down unless the former is greater than the latter.

Formal verification of this algorithm is difficult. We wish to prove that agreement and
validity are invariants of the algorithm (i.e., they are true of all reachable states), but it is

112

difficult to do this directly (because it is hard to characterize the reachable states). So, in-
stead, we try to prove a stronger property: namely, that agreement and validity are inductive
(that is, true of the initial states and preserved by all steps of the algorithm). The general
problem with this approach to verification of safety properties of distributed algorithms is
that natural statements of the properties of interest are seldom inductive. Instead, it is nec-
essary to strengthen them by conjoining additional properties until they become inductive.
The additional properties typically are discovered by examining failed proofs and require
human insight.

Before details of the TTA group membership algorithm were known, Katz, Lincoln,
and Rushby published a different algorithm for a similar problem, together with an infor-
mal proof of its correctness [23] (I will call this the “WDAG” algorithm). A flaw in this
algorithm for the special case of three nodes was discovered independently by Shankar and
by Creese and Roscoe [12] and considerable effort was expended in attempts to formally
verify the corrected version. A suitable method was found by Rushby [53] who used it to
formally verify the WDAG algorithm, but used a simplified algorithm (called the “CAV”
algorithm) to explicate the method in [53]. The method is based on strengthening a putative
safety property into a disjunction of “configurations” that can easily be proved to be induc-
tive. Configurations can be constructed systematically and transitions among them have a
natural diagrammatic representation that conveys insight into the operation of the algorithm.
Pfeifer subsequently used this method to verify validity, agreement, and self-diagnosis for
the full TTA membership algorithm [44] (verification of self-diagnosis is not described in
the paper).

Although the method just described is systematic, it does require considerable human
interaction and insight, so more automatic methods are desirable. All the group member-
ship algorithms mentioned (CAV, WDAG, TTA) are � -process algorithms (so-called pa-
rameterized systems), so one attractive class of methods seeks to reduce the general case to
some fixed configuration (say four processes) of an abstracted algorithm that can be model
checked. Creese and Roscoe [12] report an investigation along these lines for the WDAG
algorithm. The difficulty in such approaches is that proving that the abstracted algorithm is
faithful to the original is often as hard as the direct proof.

An alternative is to construct the abstracted algorithm using automated theorem proving
so that the result is guaranteed to be sound, but possibly too conservative. These methods
are widely used for predicate [62] and data [11] abstraction (both methods are implemented
in PVS using a generalization of the technique described in [63]), and have been applied
to � -process examples [71]. The precision of an abstraction is determined by the guidance
provided to the calculation (e.g., which predicates to abstract on) and by the power of the
automated deduction methods that are employed.5 The logic called WS1S is very attractive
in this regard, because it is very expressive (it can represent arithmetic and set operations on
integers) and it is decidable [14]. The method implemented in the PAX tool [4,5] performs

5In this context, automated deduction methods are used in a failure-tolerant manner, so that if the methods
fail to prove a true theorem, the resulting abstraction will be sound, but more conservative than necessary.

113

automated abstraction of parameterized specifications modeled in WS1S. Application of the
tool to the CAV group membership protocol is described on the PAX web page at http://
www.informatik.uni-kiel.de/˜kba/pax/examples.html. The abstraction yields
a finite-state system that can be examined by model checking. I conjecture that extension
of this method to the TTA algorithm may prove difficult because the counters used in that
algorithm add an extra unbounded dimension.

The design of TTA (and particularly of the central guardian) is intended to minimize vi-
olations of the benign fault hypothesis of the group membership algorithm. But we cannot
guarantee absence of such violations, so the membership algorithm is buttressed by a clique
avoidance algorithm (it would better be called a clique elimination algorithm) that sacrifices
validity but maintains agreement under weakened fault hypotheses. Clique avoidance is ac-
tually a subalgorithm of the membership algorithm: it comprises just the part that manages
the accept and reject counters and that causes a node to shut down prior to a broadcast un-
less its accept count exceeds its reject count at that point. The clique avoidance algorithm
can be analyzed either in isolation or, more accurately, in the presence of the rest of the
membership algorithm (this is, the part that deals with the first and second successor).

Beyond the benign fault hypothesis lie asymmetric faults (where more than one but less
than all nodes fail to receive a broadcast correctly), and multiple faults, which are those
that arrive less than two rounds apart. These hypotheses all concern loss of messages; ad-
ditional hypotheses include processor faults, where nodes fail to follow the algorithm, and
transient faults, where nodes have their state corrupted (e.g., by high-intensity radiation)
but otherwise follow the algorithm correctly.

Bauer and Paulitsch [3] describe the clique avoidance algorithm and give an informal
proof that it tolerates a single asymmetric fault. Their analysis includes the effects of the rest
of the membership algorithm. Bouajjani and Merceron [8] prove that the clique avoidance
algorithm, considered in isolation, tolerates multiple asymmetric faults; they also describe
an abstraction for the � -node,

�
-faults parameterized case that yields a counter automaton.

Reachability is decidable for this class of systems, and experiments are reported with two
automated verifiers for the

�� �
case.

For transient faults, I conjecture that the most appropriate framework for analysis is
that of self-stabilization [68]. An algorithm is said to be self-stabilizing if it converges to
a stable “good” state starting from an arbitrary initial state. The arbitrary initial state can
be one caused by an electromagnetic upset (e.g., that changes the values of the accept and
reject counters), or by other faults outside the benign fault hypotheses.

An attractive treatment of self-stabilization is provided by the “Detectors and Correc-
tors” theory of Arora and Kulkarni. The full theory [2, 31] is comprehensive and more
than is needed for my purposes, so I present a simplified and slightly modified version that
adapts the important insights of the original formulation to the problem at hand.

We assume some “base” algorithm � whose purpose is to maintain an invariant � : that
is, if the (distributed) system starts in a state satisfying the predicate � , then execution of �
will maintain that property. In our case, � is the TTA group membership algorithm, and �

114

is the conjunction of the agreement and validity properties. � corresponds to what Arora
and Kulkarni call the “fault-intolerant” program, but in our context it is actually a fault-
tolerant algorithm in its own right. This aspect of the system’s operation can be specified
by the Hoare formula �

��� ����� �
�

���
where � is a “fault injector” that characterizes the fault hypothesis of the base algorithm
and ����� � denotes the concurrent execution of � and � .

Now, a transient fault can take the system to some state not satisfying � , and at this
point our hope is that a “corrector” algorithm � will take over and somehow cause the
system to converge to a state satisfying � , where the base algorithm can take over again.
We can represent this by the following formula

��� �
	 �

where
	

is the eventually modality of temporal logic.
In our case, � is the TTA clique avoidance algorithm. So far we have treated � and �

separately but, as noted previously, they must actually run concurrently, so we really require�
��������� ����� �

�
���

and
���� ����� ��� �
	 ���

The presence of � in the last of these represents the fact that although the disturbance that
took the system to an arbitrary state is assumed to have passed when convergence begins,
the standard, benign fault hypothesis still applies.

To ensure the first of these formulas, we need that � does not interfere with � —that
is, that ���� � behaves the same as � (and hence ����� ����� � behaves the same as ����� �). A
very direct way to ensure this is for � actually to be a subalgorithm of � —for then ����� �
is the same as � . As we have already seen later, this is the case in TTA, where the clique
avoidance algorithm is just a part of the membership algorithm.

A slight additional complication is that the corrector may not be able to restore the
system to the ideal condition characterized by � , but only to some “safe” approximation to
it, characterized by ��� . This is the case in TTA, where clique avoidance sacrifices validity.
Our formulas therefore become the following.�

��������� ����� �
�

��� (1)�
� � ������� ����� �

�
� ��� ����������� ��� � � (2)

and
����� ����� ��� �
	 � � � (3)

115

The challenge is formally to verify these three formulas. Concretely, (1) is accom-
plished for TTA by Pfeifer’s verification [44] (and potentially, in more automated form, by
extensions to the approaches of [4, 8]), (2) should require little more than an adjustment to
those proofs, and the hard case is (3). Bouajjani and Merceron’s analysis [8] can be seen as
establishing

� � � 	 � �
for the restricted case where the arbitrary initial state is one produced by the occurrence of
multiple, possibly asymmetric faults in message transmission or reception. The general case
must consider the possibility that the initial state is produced by some outside disturbance
that sets the counters and flags of the algorithm to arbitrary values (I have formally verified
this case for a simplified algorithm), and must also consider the presence of � and � .
Formal verification of this general case is an interesting challenge for the future. Kulkarni
[30, 31] has formally specified and verified the general detectors and correctors theory in
PVS, and this provides a useful framework in which to develop the argument.

A separate topic is to examine the consequences of giving up validity in order to main-
tain agreement under the clique avoidance algorithm. Under the never give up philosophy,
it is reasonable to sacrifice one property rather than lose all coordination when the standard
fault hypothesis is violated, but some useful insight may be gained through an attempt to
formally characterize the possible behaviors in these cases.

Reintegration has so far been absent from the discussion. A node that diagnoses a
problem in its own operation will drop out of the membership, perform diagnostic tests and,
if these are satisfactory (indicating that the original fault was a transient event), attempt to
reintegrate itself into the running system. This requires that the node first (re)synchronizes
its clock to the running system, then acquires the current membership, and then “speaks
up” at its next slot in the schedule. There are potential difficulties here: for example, a
broadcast by a node � may be missed by a node � whose membership is used to initialize a
reintegrating node � ; rejection of its message by � and � then causes the good node � to shut
down. This scenario is excluded by the requirement that a reintegrating node must correctly
receive a certain number of messages before it may broadcast itself. Formal examination of
reintegration scenarios is another interesting challenge for the future.

5 Interaction of Clock Synchronization and Group Member-
ship

Previous sections considered clock synchronization and group membership in isolation but
noted that, in reality, they interact: synchronization depends on membership to eliminate
nodes diagnosed as faulty, while membership depends on synchronization to create the
time-triggered round structure on which its operation depends. Mutual dependence of com-
ponents on the correct operation of each other is generally formalized in terms of assume-
guarantee reasoning, first introduced by Chandy and Misra [39] and Jones [22]. The idea is

116

to show that component
���

guarantees certain properties � �
on the assumption that com-

ponent
���

delivers certain properties � � , and vice versa for
���

, and then claim that the
composition of

���
and

���
guarantees � � and � � unconditionally. This kind of reasoning

appears—and indeed is—circular in that
���

depends on
���

and vice versa. The circularity
can lead to unsoundness and there has been much research on the formulation of rules for
assume-guarantee reasoning that are both sound and useful. Different rules may be com-
pared according to the kinds of system models and specification they support, the extent
to which they lend themselves to mechanized analysis, and the extent to which they are
preserved under refinement (i.e., the circumstances under which

���
can be replaced by an

implementation that may do more than
���

).
Closer examination of the circular dependency in TTA reveals that it is not circular if

the temporal evolution of the system is taken into consideration: clock synchronization in
round 	 depends on group membership in round 	 	 � , which in turn depends on clock syn-
chronization in round 	 	 � and so on. McMillan [37] has introduced an assume-guarantee
rule that seems appropriate to this case. McMillan’s rule can be expressed as follows, where

is a “helper” property (which can be simply true), � is the “always” modality of Linear
Temporal Logic (LTL), and ���� (“ � constrains � ”) means that if � is always true up to
time 	 , then � holds at time 	 � � (i.e., � fails before �), where we interpret time as rounds.

�
������ � � � �� ����
���� � � � � �� � ��
������ ��� ��� � ����� ��� � � �!�
(4)

Notice that ��"� can be written as the LTL formula #��$��%&#�� � , where % is the LTL “un-
til” operator. This means that the antecedent formulas can be established by LTL model
checking if the transition relations for

���
and

���
are finite.

I believe the soundness of the circular interaction between the clock synchronization
and group membership algorithms of TTA can be formally verified using McMillan’s rule.
To carry this out, we need to import the proof rule (4) into the verification framework
employed—and for this we probably need to embed the semantics of the rule into the spec-
ification language concerned. McMillan’s presentation of the rule only sketches the argu-
ment for its soundness; a more formal treatment is given by Namjoshi and Trefler [40], but it
is not easy reading and does not convey the basic intuition. Rushby [56] presents an embed-
ding of LTL in the PVS specification language and formally verifies the soundness of the
rule. The specification and proof are surprisingly short and provide a good demonstration
of the power and convenience of the PVS language and prover.

Using this foundation to verify the interaction between the clock synchronization and
group membership algorithms of TTA remains a challenge for the future. Observe that such
an application of assume-guarantee reasoning has rather an unusual character: convention-
ally, the components in assume-guarantee reasoning are viewed as separate, peer processes,
whereas here they are distributed algorithms that form part of a protocol hierarchy (with
membership above synchronization).

117

6 Emergent Properties

Clock synchronization, transmission window timing, and group membership are important
properties, but what makes TTA useful are not the individual properties of its constituent
algorithms, but the emergent properties that come about through their combination. These
emergent properties are understood by the designers and advocates of TTA, but they have
not been articulated formally in ways that are fully satisfactory, and I consider this the most
important and interesting of the tasks that remain in the formal analysis of TTA.

I consider the three “top level” properties of TTA to be the time-triggered model of
computation, support for application-independent fault tolerance, and partitioning. The
time-triggered model of computation can be construed narrowly or broadly. Narrowly, it is
a variant on the notion of synchronous system [35]: these are distributed computer systems
where there are known upper bounds on the time that it takes nonfaulty processors to per-
form certain operations, and on the time that it takes for a message sent by one nonfaulty
processor to be received by another. The existence of these bounds simplifies the develop-
ment of fault-tolerant systems because nonfaulty processes executing a common algorithm
can use the passage of time to predict each others’ progress, and the absence of expected
messages can be detected. This property contrasts with asynchronous systems, where there
are no upper bounds on processing and message delays, and where it is therefore provably
impossible to achieve certain forms of consistent knowledge or coordinated action in the
presence of even simple faults [9, 17]. Rushby [52] presents a formal verification that a
system possessing the synchronization and scheduling mechanisms of TTA can be used to
create the abstraction of a synchronous system. An alternative model, closer to TTA in that
it does not abstract out the real-time behavior, is that of the language Giotto [19] and it
would be interesting to formalize the connection between TTA and Giotto.

More broadly construed, the notion of time-triggered system encompasses a whole phi-
losophy of real-time systems design—notably that espoused by Kopetz [25]. Kopetz’ broad
conception includes a distinction between composite and elementary interfaces [27] and the
notion of a temporal firewall [24].

A time-triggered system does not merely schedule activity within nodes, it also man-
ages the reliable transmission of messages between them. Messages obviously communi-
cate data between nodes (and the processes within them) but they may also, through their
presence or absence and through the data that they convey, influence the flow of control
within a node or process (or, more generically, a component). An important insight is that
one component should not allow another to control its own progress. Suppose, for exam-
ple, that the guarantees delivered by component

���
are quite weak, such as, “this buffer

may sometimes contain recent data concerning parameter � .” Another component
���

that
uses this data must be prepared to operate when recent data about � is unavailable (at least
from

� �
). It might seem that predictability and simplicity would be enhanced if we were

to ensure that the flow of data about � is reliable—perhaps using a protocol involving ac-
knowledgments. But in fact, contrary to this intuition, such a mechanism would greatly

118

increase the coupling between components and introduce more complicated failure propa-
gations. For example,

���
could block waiting for an acknowledgment from

���
that may

never come if
���

has failed, thereby propagating the failure from
� �

to
���

. Kopetz [27]
defines interfaces that involve such bidirectional flow of control as composite and argues
convincingly that they should be eschewed in favor of elementary interfaces in which con-
trol flow is unidirectional.

The need for elementary interfaces leads to protocols for nonblocking asynchronous
communication that nonetheless ensure timely transmission and mutual exclusion (i.e., no
simultaneous reading and writing of the same buffer). In computer science, these are known
as lock- and wait-free atomic register constructions ([1] is a convenient survey, focussing
on the work of Lamport, who first introduced the topic), but similar constructions were
developed independently in the avionics and real-time communities. The best-known of
these is the four-slot protocol of Simpson [72]. Formal analyses of Simpson’s protocol have
been developed by Clark [10] (using Petri nets), by Rushby [59] (using model checking),
and by Henderson and Paynter [18] (using PVS). Hesselink [21] have verified some atomic
register constructions from the computer science literature using ACL2.

TTA uses a protocol called NBW (nonblocking write) [29] whose wait-free element
was inspired by Simpson’s algorithm, and whose lock-free construction is that of Lamport
[33]. It would be useful to undertake a formal examination of NBW (which is used in
the Communication Network Interface (CNI) that provides communication between hosts
and their TTA controllers), particularly since Simpson’s algorithm requires atomic control
registers, and Rushby’s analysis [59] shows that it fails when this (very strong) assumption
is violated.

The larger issue of formally characterizing composite and elementary interfaces has not
yet been tackled, to my knowledge. It is debatable whether formalization of these notions
is best performed as part of a broad treatment of time-triggered systems, or as part of an or-
thogonal topic concerned with application-independent fault tolerance. Temporal firewalls,
another element in Kopetz’ comprehensive philosophy [24], seem definitely to belong in
the treatment of fault tolerance. The standard way to communicate a sensor sample is to
package it with a timestamp: then the consuming process can estimate the “freshness” of
the sample. But surely the useful lifetime of a sample depends on the accuracy of the orig-
inal reading and on the dynamics of the parameter being measured—and these factors are
better known to the process doing the sensing than to the process that consumes the sam-
ple. So, argues Kopetz, it is better to turn the timestamp around, so that it indicates the
“must use by” time, rather than the time at which the sample was taken. This is the idea
of the temporal firewall, which exists in two variants. A phase-insensitive sensor sample
is provided with a time and a guarantee that the sampled value is accurate (with respect
to a specification published by the process that provides it) until the indicated time. For
example, suppose that engine oil temperature may change by at most 1% of its range per
second, that its sensor is completely accurate, and that the data is to be guaranteed to 0.5%.
Then the sensor sample will be provided with a time 500 ms ahead of the instant when it

119

was sampled, and the receiver will know that it is safe to use the sampled value until the
indicated time. A phase-sensitive temporal firewall is used for rapidly changing parameters;
in addition to sensor sample and time, it provides the parameters needed to perform state
estimation. For example, along with sampled crankshaft angle, it may supply RPM, so that
angle may be estimated more accurately at the time of use.

The advantage of temporal firewalls is that they allow some of the downstream pro-
cessing (e.g., sensor fusion) to become less application dependent. Temporal firewalls are
consistent with modern notions of smart sensors that co-locate computing resources with
the sensor. Such resources allow a sensor to return additional information, including an
estimate of the accuracy of its own reading. An attractive way to indicate (confidence
in) the accuracy of a sensor reading is to return two values (both packaged in a temporal
firewall) indicating the upper and lower 95% (say) confidence interval. If several such in-
tervals are available from redundant sensors, then an interesting question is how best to
combine (or fuse) them. Marzullo [36] introduces the sensor fusion function ����� � � � �

for
this problem; Rushby formally verifies the soundness of this construction (i.e., the fused
interval always contains the correct value) [58]. A weakness of Marzullo’s function is that
it lacks the “Lipschitz Condition”: small changes in input sensor readings can sometimes
produce large changes in its output. Schmid and Schossmaier [65] have recently introduced
an improved fusion function � �� � � �

that does satisfy the Lipschitz condition, and is optimal
among all such functions. It would be interesting to verify formally the properties of this
function.

Principled fault tolerance requires not only that redundant sensor values are fused effec-
tively, but that all redundant consumers agree on exactly the same values; this is the notion
of replica determinism [46] that provides the foundation for state machine replication [67]
and other methods for application-independent fault tolerance based on exact-match voting.
Replica determinism in its turn depends on interactively consistent message passing: that
is, message passing in which all nonfaulty recipients obtain the same value [43], even if
the sender and some of the intermediaries in the transmission are faulty (this is also known
as the problem of Byzantine Agreement [34]). It is well known [35] that interactive consis-
tency cannot be achieved in the presence of a single arbitrary fault with less than two rounds
of information exchange (one to disseminate the values, and one to cross-check), yet TTA
sends each message in only a single broadcast. How can we reconcile this practice with
theory? I suggest in [55] that the interaction of message broadcasts with the group member-
ship algorithm (which can be seen as a continuously interleaving two-round algorithm) in
TTA achieves a “Draconian consensus” in which agreement is enforced by removal of any
members that disagree. It would be interesting to subject this idea to formal examination,
and to construct an integrated formal treatment for application-level fault tolerance in TTA
similar to those previously developed for classical state machine replication [13, 48].

The final top-level property is the most important for safety-critical applications; it is
called partitioning and it refers to the requirement that faults in one component of TTA, or
in one application supported by TTA, must not propagate to other components and appli-

120

cations, and must not affect the operation of nonfaulty components and applications, other
than through loss of the services provided by the failed elements. It is quite easy to develop
a formal statement of partitioning—but only in the absence of the qualification introduced in
the final clause of the previous sentence (see [51] for an extended discussion of this topic).
In the absence of communication, partitioning is equivalent to isolation and this property
has a long history of formal analysis in the security community [47] and has been adapted
to include the real-time attributes that are important in embedded systems [79]. In essence,
formal statements of isolation state that the behavior perceived by one component is en-
tirely unchanged by the presence or absence of other components. When communication
between components is allowed, this simple statement no longer suffices, for if

� �
supplies

input to
� �

, then absence of
� �

certainly changes the behavior perceived by
� �

. What we
want to say is that the only change perceived by

� �
is that due to the faulty or missing data

supplied by
� �

(i.e.,
� �

must not be able to interfere with
� �

’s communication with other
components, nor write directly into its memory, and so on). To my knowledge, there is no
fully satisfactory formal statement of this interpretation of partitioning.

It is clear that properties of the TTA algorithms and architecture are crucial to partition-
ing (e.g., clock synchronization, the global schedule, existence of guardians, the single-fault
assumption, and transmission window timing are all needed to stop a faulty node violating
partitioning by babbling on the bus), and there are strong informal arguments (backed by
experiment) that these properties are sufficient [55], but to my knowledge there is as yet no
comprehensive formal treatment of this argument.

7 Conclusion

TTA provides several challenging formal verification problems. Those who wish to develop
or benchmark new techniques or tools can find good test cases among the algorithms and
requirements of TTA. However, I believe that the most interesting and rewarding problems
are those that concern the interactions of several algorithms, and it is here that new meth-
ods of compositional analysis and verification are most urgently needed. Examples include
the interaction between the group membership and clique avoidance algorithms and their
joint behavior under various fault hypotheses, the mutual interdependence of clock synchro-
nization and group membership, and the top-level properties that emerge from the collective
interaction of all the algorithms and architectural attributes of TTA. Progress on these fronts
will not only advance the techniques and tools of formal methods, but will strengthen and
deepen ties between the formal methods and embedded systems communities, and make a
valuable contribution to assurance for the safety-critical systems that are increasingly part
of our daily lives.

121

Acknowledgments

Günther Bauer of TU Vienna provided helpful comments and corrections for a previous
version of this paper.

References

Papers on formal methods and automated verification by SRI authors can generally be lo-
cated by visiting home pages or doing a search from http://www.csl.sri.com/
programs/formalmethods.

[1] James H. Anderson. Lamport on mutual exclusion: 27 years of planting seeds. In 20th ACM
Symposium on Principles of Distributed Computing, pages 3–12, Association for Computing
Machinery, Newport, RI, August 2001.

[2] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In 18th International Conference on Distributed Computing Systems, pages 436–
443, IEEE Computer Society, Amsterdam, The Netherlands, 1998.

[3] Günther Bauer and Michael Paulitsch. An investigation of membership and clique avoidance
in TTP/C. In 19th Symposium on Reliable Distributed Systems, Nuremberg, Germany, October
2000.

[4] Kai Baukus, Saddek Bensalem, Yassine Lakhnech, and Karsten Stahl. Abstracting WS1S
systems to verify parameterized networks. In Susanne Graf and Michael Schwartzbach, edi-
tors, Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2000), pages
188–203, Berlin, Germany, March 2000.

[5] Kai Baukus, Yassine Lakhnech, and Karsten Stahl. Verifying universal properties of parameter-
ized networks. In Matthai Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant
Systems, Volume 1926 of Springer-Verlag Lecture Notes in Computer Science, pages 291–303,
Pune, India, September 2000.

[6] Saddek Bensalem, Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, and Yassine
Lakhnech. A transformational approach for generating non-linear invariants. In Jens Palsberg,
editor, Seventh International Static Analysis Symposium (SAS’00), Volume 1824 of Springer-
Verlag Lecture Notes in Computer Science, pages 58–74, Santa Barbara CA, June 2000.

[7] Saddek Bensalem and Yassine Lakhnech. Automatic generation of invariants. Formal Methods
in Systems Design, 15(1):75–92, July 1999.

[8] Ahmed Bouajjani and Agathe Merceron. Parametric verification of a group membership algo-
rithm. In Werner Damm and Ernst-Rüdiger Olderog, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, Volume 2469 of Springer-Verlag Lecture Notes in Computer Sci-
ence, pages 311–330, Oldenburg, Germany, November 2002.

[9] Tushar D. Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette Charron-Bost. On the
impossibility of group membership. In Fifteenth ACM Symposium on Principles of Distributed
Computing, pages 322–330, Association for Computing Machinery, Philadelphia, PA, May
1996.

122

[10] Ian G. Clark. A Unified Approach to the Study of Asynchronous Communication Mechanisms
in Real Time Systems. PhD thesis, King’s College, London University, May 2000.

[11] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach,
and Hongjun Zheng. Bandera: Extracting finite-state models from Java source code. In 22nd
International Conference on Software Engineering, pages 439–448, IEEE Computer Society,
Limerick, Ireland, June 2000.

[12] S. J. Creese and A. W. Roscoe. TTP: A case study in combining induction and data indepen-
dence. Technical Report PRG-TR-1-99, Oxford University Computing Laboratory, Oxford,
England, 1999.

[13] Ben L. Di Vito and Ricky W. Butler. Formal techniques for synchronized fault-tolerant sys-
tems. In C. E. Landwehr, B. Randell, and L. Simoncini, editors, Dependable Computing for
Critical Applications—3. Volume 8 of Springer-Verlag, Vienna, Austria Dependable Comput-
ing and Fault-Tolerant Systems, pages 163–188, September 1992.

[14] Jacob Elgaard, Nils Klarlund, and Anders Möller. Mona 1.x: New techniques for WS1S
and WS2S. In Alan J. Hu and Moshe Y. Vardi, editors, Computer-Aided Verification, CAV
’98, Volume 1427 of Springer-Verlag Lecture Notes in Computer Science, pages 516–520,
Vancouver, Canada, June 1998.

[15] E. A. Emerson and A. P. Sistla, editors. Computer-Aided Verification, CAV ’2000, Volume
1855 of Springer-Verlag Lecture Notes in Computer Science, Chicago, IL, July 2000.

[16] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonization and Solving. In
G. Berry, H. Comon, and A. Finkel, editors, Computer-Aided Verification, CAV ’2001, Volume
2102 of Springer-Verlag Lecture Notes in Computer Science, pages 246–249, Paris, France,
July 2001.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[18] N. Henderson and S. E. Paynter. The formal classification and verification of Simpson’s 4-
slot asynchronous communication mechanism. In Peter Lindsay, editor, FME 2002: Formal
Methods–Getting IT Right, pages 350–369, Copenhagen, Denmark, July 2002.

[19] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered language for embed-
ded programming. In Henzinger and Kirsch [20], pages 166–184.

[20] Tom Henzinger and Christoph Kirsch, editors. EMSOFT 2001: Proceedings of the First Work-
shop on Embedded Software, Volume 2211 of Springer-Verlag Lecture Notes in Computer
Science, Lake Tahoe, CA, October 2001.

[21] Wim H. Hesselink. An assertional criterion for atomicity. Acta Informatica, 28(5):343–366,
2002.

[22] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
TOPLAS, 5(4):596–619, 1983.

[23] Shmuel Katz, Pat Lincoln, and John Rushby. Low-overhead time-triggered group member-
ship. In Marios Mavronicolas and Philippas Tsigas, editors, 11th International Workshop on
Distributed Algorithms (WDAG ’97), Volume 1320 of Springer-Verlag Lecture Notes in Com-
puter Science, pages 155–169, Saarbrücken Germany, September 1997.

123

[24] Herman Kopetz and R. Nossal. Temporal firewalls in large distributed real-time systems. In 6th
IEEE Workshop on Future Trends in Distributed Computing, pages 310–315, IEEE Computer
Society, Tunis, Tunisia, October 1997.

[25] Hermann Kopetz. Real-Time Systems: Design Princples for Distributed Embedded Applica-
tions. The Kluwer International Series in Engineering and Computer Science. Kluwer, Dor-
drecht, The Netherlands, 1997.

[26] Hermann Kopetz. The time-triggered model of computation. In Real Time Systems Symposium,
IEEE Computer Society, Madrid, Spain, December 1998.

[27] Hermann Kopetz. Elementary versus composite interfaces in distributed real-time systems. In
The Fourth International Symposium on Autonomous Decentralized Systems, IEEE Computer
Society, Tokyo, Japan, March 1999.

[28] Hermann Kopetz and Günter Grünsteidl. TTP—a protocol for fault-tolerant real-time systems.
IEEE Computer, 27(1):14–23, January 1994.

[29] Hermann Kopetz and Johannes Reisinger. The non-blocking write protocol NBW: A solution
to a real-time synchronization problem. In Real Time Systems Symposium, pages 131–137,
IEEE Computer Society, Raleigh-Durham, NC, December 1993.

[30] Sandeep Kulkarni, John Rushby, and N. Shankar. A case study in component-based mechan-
ical verification of fault-tolerant programs. In ICDCS Workshop on Self-Stabilizing Systems,
pages 33–40, IEEE Computer Society, Austin, TX, June 1999.

[31] Sandeep S. Kulkarni. Component-Based Design of Fault Tolerance. PhD thesis, The Ohio
State University, Columbus, OH, 1999.

[32] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults. Journal
of the ACM, 32(1):52–78, January 1985.

[33] Leslie Lamport. Concurrent reading and writing. Association for Computing Machinery,
20(11):806–811, November 1977.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[35] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann, San Francisco, CA, 1996.

[36] Keith Marzullo. Tolerating failures of continuous-valued sensors. ACM Transactions on Com-
puter Systems, 8(4):284–304, November 1990.

[37] K. L. McMillan. Circular compositional reasoning about liveness. In Laurence Pierre and
Thomas Kropf, editors, Advances in Hardware Design and Verification: IFIP WG10.5 Inter-
national Conference on Correct Hardware Design and Verification Methods (CHARME ’99),
Volume 1703 of Springer-Verlag Lecture Notes in Computer Science, pages 342–345, Bad
Herrenalb, Germany, September 1999.

[38] Paul S. Miner. Verification of fault-tolerant clock synchronization systems. NASA Technical
Paper 3349, NASA Langley Research Center, Hampton, VA, November 1993.

[39] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Transactions on
Software Engineering, 7(4):417–426, July 1981.

124

[40] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional reasoning.
In Emerson and Sistla [15], pages 139–153.

[41] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107–125, February 1995.

[42] Michael Paulitsch and Wilfried Steiner. The transition from asynchronous to synchronous sys-
tem operation: An approach for distributed fault-tolerant systems. In The 22nd International
Conference on Distributed Computing Systems (ICDCS ’02), pages 329–336, IEEE Computer
Society, Vienna, Austria, July 2002.

[43] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, April 1980.

[44] Holger Pfeifer. Formal verification of the TTA group membership algorithm. In Tommaso
Bolognesi and Diego Latella, editors, Formal Description Techniques and Protocol Specifica-
tion, Testing and Verification FORTE XIII/PSTV XX 2000, pages 3–18, Pisa, Italy, October
2000.

[45] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal verification for time-
triggered clock synchronization. In Weinstock and Rushby [77], pages 207–226.

[46] Stefan Poledna. Fault-Tolerant Systems: The Problem of Replica Determinism. The Kluwer In-
ternational Series in Engineering and Computer Science. Kluwer, Dordrecht, The Netherlands,
1996.

[47] John Rushby. The design and verification of secure systems. In Eighth ACM Symposium on
Operating System Principles, pages 12–21, Asilomar, CA, December 1981. (ACM Operating
Systems Review, Vol. 15, No. 5).

[48] John Rushby. A fault-masking and transient-recovery model for digital flight-control systems.
In Jan Vytopil, editor, Formal Techniques in Real-Time and Fault-Tolerant Systems, Kluwer
International Series in Engineering and Computer Science, chapter 5, pages 109–136. Kluwer,
Boston, Dordecht, London, 1993.

[49] John Rushby. A formally verified algorithm for clock synchronization under a hybrid fault
model. In Thirteenth ACM Symposium on Principles of Distributed Computing, pages 304–
313, Association for Computing Machinery, Los Angeles, CA, August 1994. Also available
as NASA Contractor Report 198289.

[50] John Rushby. Automated deduction and formal methods. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, Volume 1102 of Springer-Verlag
Lecture Notes in Computer Science, pages 169–183, New Brunswick, NJ, July/August 1996.

[51] John Rushby. Partitioning for avionics architectures: Requirements, mechanisms, and
assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research Cen-
ter, June 1999. Available at http://www.csl.sri.com/˜rushby/abstracts/
partitioning, and http://techreports.larc.nasa.gov/ltrs/PDF/1999/
cr/NASA-99-cr209347.pdf; also issued by the FAA.

[52] John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms. IEEE
Transactions on Software Engineering, 25(5):651–660, September/October 1999.

125

[53] John Rushby. Verification diagrams revisited: Disjunctive invariants for easy verification. In
Emerson and Sistla [15], pages 508–520.

[54] John Rushby. Bus architectures for safety-critical embedded systems. In Henzinger and Kirsch
[20], pages 306–323.

[55] John Rushby. A comparison of bus architectures for safety-critical embedded systems. Techni-
cal report, Computer Science Laboratory, SRI International, Menlo Park, CA, September 2001.
Available at http://www.csl.sri.com/˜rushby/abstracts/buscompare.

[56] John Rushby. Formal verification of McMillan’s compositional assume-guarantee rule. Tech-
nical report, Computer Science Laboratory, SRI International, Menlo Park, CA, September
2001.

[57] John Rushby. Formal verification of transmission window timing for the time-triggered archi-
tecture. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA,
March 2001.

[58] John Rushby. Formal verification of Marzullo’s sensor fusion interval. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, January 2002.

[59] John Rushby. Model checking Simpson’s four-slot fully asynchronous communication mech-
anism. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA,
July 2002.

[60] John Rushby and Friedrich von Henke. Formal verification of algorithms for critical systems.
IEEE Transactions on Software Engineering, 19(1):13–23, January 1993.

[61] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal specification
and verification using EHDM. Technical Report SRI-CSL-91-2, Computer Science Laboratory,
SRI International, Menlo Park, CA, February 1991.

[62] Hassen Saı̈di and Susanne Graf. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor, Computer-Aided Verification, CAV ’97, Volume 1254 of Springer-Verlag
Lecture Notes in Computer Science, pages 72–83, Haifa, Israel, June 1997.

[63] Hassen Saı̈di and N. Shankar. Abstract and model check while you prove. In Nicolas Halb-
wachs and Doron Peled, editors, Computer-Aided Verification, CAV ’99, Volume 1633 of
Springer-Verlag Lecture Notes in Computer Science, pages 443–454, Trento, Italy, July 1999.

[64] Ulrich Schmid. How to model link failures: A perception-based fault model. In The In-
ternational Conference on Dependable Systems and Networks, pages 57–66, IEEE Computer
Society, Goteborg, Sweden, July 2001.

[65] Ulrich Schmid and Klaus Schossmaier. How to reconcile fault-tolerant interval intersection
with the Lipschitz condition. Distributed Computing, 14(2):101–111, May 2001.

[66] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Techni-
cal Report 87-859, Department of Computer Science, Cornell University, Ithaca, NY, August
1987.

[67] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

126

[68] Marco Schneider. Self stabilization. ACM Computing Surveys, 25(1):45–67, March 1993.

[69] D. Schwier and F. von Henke. Mechanical verification of clock synchronization algorithms. In
Formal Techniques in Real-Time and Fault-Tolerant Systems, Volume 1486 of Springer-Verlag
Lecture Notes in Computer Science, pages 262–271, Lyngby, Denmark, September 1998.

[70] Natarajan Shankar. Mechanical verification of a generalized protocol for Byzantine fault-
tolerant clock synchronization. In J. Vytopil, editor, Formal Techniques in Real-Time and
Fault-Tolerant Systems, Volume 571 of Springer-Verlag Lecture Notes in Computer Science,
pages 217–236, Nijmegen, The Netherlands, January 1992.

[71] Natarajan Shankar. Combining theorem proving and model checking through symbolic anal-
ysis. In CONCUR 2000: Concurrency Theory, pages 1–16, State College, PA, August 2000.
Available at ftp://ftp.csl.sri.com/pub/users/shankar/concur2000.ps.
gz.

[72] H. R. Simpson. Four-slot fully asynchronous communication mechanism. IEE Proceedings,
Part E: Computers and Digital Techniques, 137(1):17–30, January 1990.

[73] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM,
34(3):626–645, July 1987.

[74] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes.
In 7th Symposium on Reliable Distributed Systems, pages 93–100, IEEE Computer Society,
Columbus, OH, October 1988.

[75] Specification of the TTP/C Protocol (version 0.6p0504). Time-Triggered Technology TTTech
Computertechnik AG, Vienna, Austria, May 2001.

[76] Ashish Tiwari, Harald Rueß, Hassen Saı̈di, and N. Shankar. A technique for invariant genera-
tion. In T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction and Analysis
of Systems: 7th International Conference, TACAS 2001, Volume 2031 of Springer-Verlag Lec-
ture Notes in Computer Science, pages 113–127, Genova, Italy, April 2001.

[77] Charles B. Weinstock and John Rushby, editors. Dependable Computing for Critical
Applications—7, Volume 12 of IEEE Computer Society Dependable Computing and Fault
Tolerant Systems, San Jose, CA, January 1999.

[78] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation, 77(1):1–36, April 1988.

[79] Matthew M. Wilding, David S. Hardin, and David A. Greve. Invariant performance: A
statement of task isolation useful for embedded application integration. In Weinstock and
Rushby [77], pages 287–300.

127

